Mapping QTL with additive effects and additive x additive epistatic interactions for plant architecture in wheat (Triticum aestivum L.)

Authors

  • Ali Asghari College of Agriculture Researcher, University of Mohaghegh Ardabil, P. O. Box: 56199-11367, Ardabil, Iran.
  • Hamze Hamze Sugar Beet Research Department, Agricultural and Natural Resources Research Center of Hamedan, Agricultural Research, Education and Extension Organization (AREEO), Hamedan, Iran.
  • Mojtaba Nouraein Department of Agronomy and Plant Breeding, Faculty of Agriculture University of Maragheh, Maragheh, Iran.
  • Omid Sofalian College of Agriculture Researcher, University of Mohaghegh Ardabil, P. O. Box: 56199-11367, Ardabil, Iran.
  • Soleiman Mohammadi Department of Seed and Plant Improvement Research, West Azerbaijan Agricultural and Natural Resources Research Center, AREEO, Urmia, Iran.
Abstract:

In bread wheat (Triticum aestivum L.), crop height is an important determinant of agronomic performance. To map QTLs with additive effects and additive×additive epistatic interactions, 148 recombinant inbred lines and their parents, (‘YecoraRojo’ and Iranian landrace (No. #49)) were evaluated under normal and water deficit conditions. The experiments were carried out on research farms of Mahabad University and Miyandoab Agricultural Research Center in 2014-2015. The experimental design was an alpha lattice design with two replications. Quantitative trait loci (QTL) for the studied traits were carried out for additive effects and additive×additive epistatic interactions using the QTL Network 2.0 software based on the mixed-linear model. A number of 177 microsatellite and 51 retrotransposon markers were used to construct the linkage map. In the present study stem length, plant weight, peduncle length, and peduncle weight were measured. Results showed that under both normal and water deficit conditions, both positive and negative transgressive segregations were significant, also the highest and lowest broad and narrow sense heritability were estimated for stem length (73.69 and 36.74 percent) and peduncle length (40.51 and 20.25 percent), respectably. The results showed that under the normal condition, seven QTLs (R2A=5 to 11%), and eight additive×additive epistatic interactions (R2AA=1.66 to 10.92%) were significant. Under the water deficit condition seven QTLs (R2A=4.27 to 9%), and five additive×additive epistatic interactions (R2AA=3.8 to 14.58%) were significant. Five QTLs from the 14 QTLs identified in this study were located in chromosome 5A, indicating the importance of this chromosome in controlling the plant architecture characteristics and possibly using it for marker-assisted selection and genetic engineering.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Mapping quantitative trait loci with additive effects and additive x additive epistatic interactions for biomass yield, grain yield, and straw yield using a doubled haploid population of wheat (Triticum aestivum L.).

Biomass yield is one of the most important traits for wheat (Triticum aestivum L.)-breeding programs. Increasing the yield of the aerial parts of wheat varieties will be an integral component of future wheat improvement; however, little is known regarding the genetic control of aerial part yield. A doubled haploid population, comprising 168 lines derived from a cross between two winter wheat cu...

full text

Analysis of the epistatic and QTL×environments interaction effects of plant height in maize (Zea mays L.)

A genetic map containing 103 microsatellite loci and 200 F2 plants derived from the cross R15 × Ye478 were used for mapping of quantitative trait loci (QTL) in maize (Zea mays L.). QTLs were characterized in a population of 200 F2:4 lines, derived from selfing the F2 plants, and were evaluated with two replications in two environments. QTL mapping analysis of plant height was performed by using...

full text

Additive, epistatic, and environmental effects through the lens of expression variability QTL in a twin cohort.

The expression of a gene can vary across individuals in the general population, as well as between monozygotic twins. This variable expression is assumed to be due to the influence of both genetic and nongenetic factors. Yet little evidence supporting this assumption has been obtained from empirical data. In this study, we used expression data from a large twin cohort to investigate the influen...

full text

Whole Genome Association Mapping of Plant Height in Winter Wheat (Triticum aestivum L.)

The genetic architecture of plant height was investigated in a set of 358 recent European winter wheat varieties plus 14 spring wheat varieties based on field data in eight environments. Genotyping of diagnostic markers revealed the Rht-D1b mutant allele in 58% of the investigated varieties, while the Rht-B1b mutant was only present in 7% of the varieties. Rht-D1 was significantly associated wi...

full text

Approximation of an additive mapping in various normed spaces

In this paper, using the fixed point and direct methods, we prove the generalized Hyers-Ulam-Rassias stability of the following Cauchy-Jensen additive functional equation: begin{equation}label{main} fleft(frac{x+y+z}{2}right)+fleft(frac{x-y+z}{2}right)=f(x)+f(z)end{equation} in various normed spaces. The concept of Hyers-Ulam-Rassias stability originated from Th. M. Rassias’ stability theorem t...

full text

Mapping of a major QTL associated with protein content on chromosome 2B in hard red winter wheat (Triticum aestivum L.)

A quantitative trait locus (QTL) controlling wheat grain protein content (GPC) and flour protein content (FPC) was identified using doubled haploid (DH) lines developed from a cross between the hard red winter wheat variety 'Yumechikara' with a high protein content used for bread making, and the soft red winter wheat 'Kitahonami' with a low protein content used for Japanese white salted noodles...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 1

pages  13- 21

publication date 2019-03-21

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023