Magnetic Fe3O4 nanoparticles as a highly efficient catalyst for the synthesis of imidazoles under ultrasound irradiation

Authors

  • Javad Safari Laboratory of Organic Compound Research, Department of Organic Chemistry, College of Chemistry, University of Kashan, P.O. Box: 87317-51167, Kashan, I.R., Iran.
  • Zohre Zarnegar Laboratory of Organic Compound Research, Department of Organic Chemistry, College of Chemistry, University of Kashan, P.O. Box: 87317-51167, Kashan, I.R., Iran.
Abstract:

To be fairly general and catalyst is easily separated by magnetic devices and can be reused without any apparent loss of activity for the reaction. Fe3O4 nanoparticles were prepared by chemical coprecipitation method and was found to be a mild and effective catalyst for the efficient, one-pot, three-component synthesis of 2,4,5-trisubstituted imidazoles at room temperature under ultrasound irradiation. The high yields of products and short reaction time were attributed to the nanosize of about 20 nm in which the catalyst could act as a nanoreactor. This methodology is found.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

magnetic fe3o4 nanoparticles as a highly efficient catalyst for the synthesis of imidazoles under ultrasound irradiation

to be fairly general and catalyst is easily separated by magnetic devices and can be reused without any apparent loss of activity for the reaction. fe3o4 nanoparticles were prepared by chemical coprecipitation method and was found to be a mild and effective catalyst for the efficient, one-pot, three-component synthesis of 2,4,5-trisubstituted imidazoles at room temperature under ultrasound irra...

full text

A highly efficient magnetic solid acid catalyst for synthesis of 2,4,5-trisubstituted imidazoles under ultrasound irradiation.

Fe(3)O(4) nanoparticles were prepared by chemical coprecipitation method and subsequently coated with 3-aminopropyltriethoxysilane (APTES) via silanization reaction. Grafting of chlorosulfuric acid on the amino-functionalized Fe(3)O(4) nanoparticles afforded sulfamic acid-functionalized magnetic nanoparticles (SA-MNPs). SA-MNPs was found to be a mild and effective solid acid catalyst for the ef...

full text

[BMIm]HSO4 as a Green and Highly Efficient Catalyst for One-pot Synthesis of 3-Substituted Indoles under Ultrasound Irradiation

A practical and green synthesis of 3-substituted indoles is reported via three-component coupling reaction of indoles, aldehydes and N-methylaniline in the presence of the acidic ionic liquid 1-butyl-3-methylimidazolium hydrogen sulfate ([BMIm]HSO4) under ultrasound irradiation at room temperature. The significant features of this procedure are high yields of the products, simple work-up, opera...

full text

Fe3O4-chitosan nanoparticles as a robust magnetic catalyst for efficient synthesis of 5-substituted hydantoins using zinc cyanide

In this paper, Fe3O4-chitosan nanoparticles were prepared by the immobilization of chitosan on the surface of Fe3O4 nanoparticles. Then, the 5-substituted hydantoins were synthesized from the condensation of aldehyde derivatives, ammonium carbonate and zinc cyanide as a well-known cyanating agent by the magnetic Fe3O4-chitosan nanoparticles under neat conditions. Fe3O4-Chitosan nanocatalyst as ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 2  issue 3

pages  121- 128

publication date 2012-09-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023