Lower bounds on the signed (total) $k$-domination number

author

Abstract:

Let $G$ be a graph with vertex set $V(G)$. For any integer $kge 1$, a signed (total) $k$-dominating functionis a function $f: V(G) rightarrow { -1, 1}$ satisfying $sum_{xin N[v]}f(x)ge k$ ($sum_{xin N(v)}f(x)ge k$)for every $vin V(G)$, where $N(v)$ is the neighborhood of $v$ and $N[v]=N(v)cup{v}$. The minimum of the values$sum_{vin V(G)}f(v)$, taken over all signed (total) $k$-dominating functions $f$, is called the signed (total)$k$-domination number. The clique number of a graph $G$ is the maximum cardinality of a complete subgraph of $G$.In this note we present some new sharp lower bounds on the signed (total) $k$-domination numberdepending on the clique number of the graph. Our results improve some known bounds.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

New bounds on the signed total domination number of graphs

In this paper, we study the signed total domination number in graphs and present new sharp lower and upper bounds for this parameter. For example by making use of the classic theorem of Turán [8], we present a sharp lower bound on Kr+1-free graphs for r ≥ 2. Applying the concept of total limited packing we bound the signed total domination number of G with δ(G) ≥ 3 from above by n−2b 2ρo(G)+δ−3...

full text

On the Signed (Total) $k$-Domination Number of a Graph

Let k be a positive integer and G = (V,E) be a graph of minimum degree at least k − 1. A function f : V → {−1, 1} is called a signed k-dominating function of G if ∑ u∈NG[v] f(u) ≥ k for all v ∈ V . The signed k-domination number of G is the minimum value of ∑ v∈V f(v) taken over all signed k-dominating functions of G. The signed total k-dominating function and signed total k-domination number o...

full text

Signed total Italian k-domination in graphs

Let k ≥ 1 be an integer, and let G be a finite and simple graph with vertex set V (G). A signed total Italian k-dominating function (STIkDF) on a graph G is a functionf : V (G) → {−1, 1, 2} satisfying the conditions that $sum_{xin N(v)}f(x)ge k$ for each vertex v ∈ V (G), where N(v) is the neighborhood of $v$, and each vertex u with f(u)=-1 is adjacent to a vertex v with f(v)=2 or to two vertic...

full text

Upper Bounds on the Total Domination Number

A total dominating set of a graph G with no isolated vertex is a set S of vertices of G such that every vertex is adjacent to a vertex in S. The total domination number of G is the minimum cardinality of a total dominating set in G. In this paper, we present several upper bounds on the total domination number in terms of the minimum degree, diameter, girth and order.

full text

Bounds on the Inverse Signed Total Domination Numbers in Graphs

Abstract. Let G = (V,E) be a simple graph. A function f : V → {−1, 1} is called an inverse signed total dominating function if the sum of its function values over any open neighborhood is at most zero. The inverse signed total domination number of G, denoted by γ0 st(G), equals to the maximum weight of an inverse signed total dominating function of G. In this paper, we establish upper bounds on...

full text

Bounds on the signed domination number of a graph

Let G = (V , E) be a simple graph on vertex set V and define a function f : V → {−1,1}. The function f is a signed dominating function if for every vertex x ∈ V , the closed neighborhood of x contains more vertices with function value 1 than with −1. The signed domination number of G, γs(G), is the minimum weight of a signed dominating function on G. We give a sharp lower bound on the signed do...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 2

pages  173- 178

publication date 2018-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023