Low Delay Time All Optical NAND, XNOR and OR Logic Gates Based on 2D Photonic Crystal Structure

Authors

Abstract:

Background and Objectives: Recently, photonic crystals have been considered as the basic structures for the realization of various optical devices for high speed optical communication. Methods: In this research, two dimensional photonic crystals are used for designing all optical logic gates. A photonic crystal structure with a triangular lattice is proposed for making NAND, XNOR, and OR optical logic gates. Using the structure as the intended logic gate is possible without the need to change the structure through the use of the phase difference at the inputs. Line and point defects have been used to propagate light from inputs to output. The logical values "0" and "1", are defined based on the amount of transferred optical power to the output. Results: The simple structure and the use of line and point defects, instead of ring resonators, reduce the complexity of the design and its use in optical logic integrated circuits. Another advantage of proposed structure, in comparison to the previous structures is the reduction in delay time that increases its speed. The maximum delay time of the proposed optical NAND, XNOR, and OR gates is about 0.1ps. Conclusion: In this study, one structure is suggested for realizing NAND, XNOR, and OR logic gates. This structure has a small size and low delay time, and is suitable for use in optical integrated circuits.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Ultra-Fast All-Optical Symmetry 4×2 Encoder Based on Interface Effect in 2D Photonic Crystal

This paper deals with the design and simulation of all-optical 4×2 encoderusing the wave interference effect in photonic crystals. By producing 4 opticalwaveguides as input and two waveguides as output, the given structure was designed.The size of the designed structure is 133.9 μm2. The given all-optical encoder has acontrast ratio of 13.2 dB, the response time of 0.45 ...

full text

A novel design for all-optical NAND/NOR/XOR gates based on nonlinear directional coupler

In this paper a novel all-optical logic NAND, NOR and XOR gate based on nonlinear directional coupler theory is demonstrated. We use the identical structure which contains three waveguides, for designing these gates; the only difference however, is the power of inputs light beam. In other words, while a beam with 4 W/μm in power considered as logical one, the output is NAND gate and if a beam w...

full text

A novel design for all-optical NAND/NOR/XOR gates based on nonlinear directional coupler

In this paper a novel all-optical logic NAND, NOR and XOR gate based on nonlinear directional coupler theory is demonstrated. We use the identical structure which contains three waveguides, for designing these gates; the only difference however, is the power of inputs light beam. In other words, while a beam with 4 W/μm in power considered as logical one, the output is NAND gate and if a beam w...

full text

DNA-based photonic logic gates: AND, NAND, and INHIBIT.

Conventional microprocessors use elementary logic gates to perform complex computational tasks. Mimicking such computational processes using purely molecular systems has been limited in most cases by the lack of design generality or potential addressability of existing molecular logic gates. Herein we report that by employing the universal recognition properties of DNA simple photonic logic gat...

full text

Design and Simulation of All-Optical OR Logic Gate based on 2-D Photonic Crystal

In this paper, we present the design of All-optical OR logic gate based on 2-D (two dimension) photonic crystals. To realize this, we consider the photonic crystals (PCs) with a square lattice of dielectric rods (refractive index=3.40). These rods are surrounded by air (refractive index=1).First we design the structure using the Finite Difference Time Domain (FDTD) method and in second step, we...

full text

Ultra-Fast All-Optical Half Subtractor Based on Photonic Crystal Ring Resonators

Abstract: In this paper, we aim to design and propose a novel structure for all-opticalhalf subtractor based on the photonic crystal. The structure includes two optical switches,one power splitter, and one power combiner. The optical switches are made of theresonant rings which use the nonlinear rods for dropping operation. The footprint of thedesigned structure is about...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 1

pages  1- 8

publication date 2019-12-20

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023