Local Symmetry of Unit Tangent Sphere Bundle With g- Natural Almost Contact B-Metric Structure

Authors

Abstract:

We consider the unit tangent sphere bundle of Riemannian manifold ( M, g ) with g-natural metric G̃ and we equip it to an almost contact B-metric structure. Considering this structure, we show that there is a direct correlation between the Riemannian curvature tensor of ( M, g ) and local symmetry property of G̃. More precisely, we prove that the flatness of metric g is necessary and sufficient for the g-natural metric G̃ to be locally symmetric.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Tangent Bundle of the Hypersurfaces in a Euclidean Space

Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...

full text

Para-Kahler tangent bundles of constant para-holomorphic sectional curvature

We characterize the natural diagonal almost product (locally product) structures on the tangent bundle of a Riemannian manifold. We obtain the conditions under which the tangent bundle endowed with the determined structure and with a metric of natural diagonal lift type is a Riemannian almost product (locally product) manifold, or an (almost) para-Hermitian manifold. We find the natural diagona...

full text

New structures on the tangent bundles and tangent sphere bundles

In this paper we study a Riemanian metric on the tangent bundle T (M) of a Riemannian manifold M which generalizes Sasaki metric and Cheeger Gromoll metric and a compatible almost complex structure which together with the metric confers to T (M) a structure of locally conformal almost Kählerian manifold. This is the natural generalization of the well known almost Kählerian structure on T (M). W...

full text

Superminimal fibres in an almost contact metric submersion

The superminimality of the fibres of an almost contact metric submersion is used to study the integrability of the horizontal distribution and the structure of the total space.

full text

The Tangent Bundle of an Almost-complex Free Loopspace

The space LV of free loops on a manifold V inherits an action of the circle group T. When V has an almost-complex structure, the tangent bundle of the free loopspace, pulled back to a certain infinite cyclic cover g LV , has an equivariant decomposition as a completion of TV ⊗ (⊕C(k)), where TV is an equivariant bundle on the cover, nonequivariantly isomorphic to the pullback of TV along evalua...

full text

Image Clustering with Metric, Local Linear Structure, and Affine Symmetry

This paper addresses the problem of clustering images of objects seen from different viewpoints. That is, given an unlabelled set of images of n objects, we seek an unsupervised algorithm that can group the images into n disjoint subsets such that each subset only contains images of a single object. We formulate this clustering problem under a very broad geometric framework. The theme is the in...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 14  issue 2

pages  93- 104

publication date 2019-10

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023