Local Annihilation Method ‎and‎ Some Stiff ‎Problems

Authors

  • A. Abdollahi Department of Mathematics, Maragheh Branch, Islamic Azad University, Maragheh, Iran.
  • E. Babolian Department‎ of Mathematical Sciences and Computer, Kharazmi University, Tehran, ‎Iran‎.
Abstract:

In this article‎, ‎a new scheme inspired from collocation method is‎ ‎presented for numerical solution of stiff initial-value problems and Fredholm integral equations of the first kind based on the derivatives of residual function‎. ‎Then‎, ‎the error analysis‎ ‎of this method is investigated by presenting an error bound‎. ‎Numerical comparisons indicate that the‎ ‎presented method yields accurate approximations in many‎ ‎cases in which the collocation method is ‎failed.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

An automatic multistep method for solving stiff initial value problems

A multistep method with matricial coefficients is developed. It can be used to solve stiff initial value problems of the form y’= Ay + g(x,y). This method bears the nature of the classical Adams-Bashforth-Moulton PC formula and can be shown to be consistent, convergent and A-stable. A careful reformulation of this method legitimatizes the implementation of this algorithm in a variable-step vari...

full text

Some Local and Non-local Variational Problems in Riemannian Geometry

— In this article we will give a brief summary of some recent work on two variational problems in Riemannian geometry. Although both involve the study of elementary symmetric functions of the eigenvalues of the Ricci tensor, as far as technique and motivation are concerned the problems are actually quite different. Résumé (Problèmes variationnels locaux et non-locaux en géométrie riemannienne) ...

full text

ساختار کلاسهایی از حلقه های z- موضعی و c- موضعی the structure of some classes of z-local and c-local rings

فرض کنیمr یک حلقه تعویض پذیر ویکدار موضعی باشدو(j(r رایکال جیکوبسن r و(z(r مجموعه مقسوم علیه های صفر حلقه r باشد.گوییم r یک حلقه z- موضعی است هرگاه j(r)^2=. .همچنین برای یک حلقه تعویض پذیر r فرض کنیم c یک عنصر ناصفر از (z( r باشد با این خاصیت که cz( r)=0 گوییم حلقه موضعی r یک حلقه c - موضعی است هرگاه و{0 و z(r)^2={cو z(r)^3=0, نیز xz( r)=0 نتیجه دهد که x عضو {c,0 } است. در این پایان نامه ساخ...

Some non-local problems with nonlinear diffusion

In this paper we study different problems with nonlinear diffusion and non-local terms, some of them arising in population dynamics. We are able to give a complete description of the set of positive solutions and their stability. For that we employ a fixed point argument for the existence and uniqueness or multiplicity results and the study of singular eigenvalue problems for stability.

full text

Some Problems in Local Harmonic Analysis

The purpose of this article is to discuss some questions in the harmonic analysis of real and padic groups. We shall be particularly concerned with the properties of a certain family of invariant distributions. These distributions arose naturally in a global context, as the terms on the geometric side of the trace formula. However, they are purely local objects, which include the ordinary invar...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 12  issue 1

pages  23- 30

publication date 2020-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023