Limiting Properties of Empirical Bayes Estimators in a Two-Factor Experiment under Inverse Gaussian Model
Authors: not saved
Abstract:
The empirical Bayes estimators of treatment effects in a factorial experiment were derived and their asymptotic properties were explored. It was shown that they were asymptotically optimal and the estimator of the scale parameter had a limiting gamma distribution while the estimators of the factor effects had a limiting multivariate normal distribution. A Bootstrap analysis was performed to illustrate the theoretical results empirically.
similar resources
limiting properties of empirical bayes estimators in a two-factor experiment under inverse gaussian model
the empirical bayes estimators of treatment effects in a factorial experiment were derived and their asymptotic properties were explored. it was shown that they were asymptotically optimal and the estimator of the scale parameter had a limiting gamma distribution while the estimators of the factor effects had a limiting multivariate normal distribution. a bootstrap analysis was performed to ill...
full textEMPIRICAL BAYES ANALYSIS OF TWO-FACTOR EXPERIMENTS UNDER INVERSE GAUSSIAN MODEL
A two-factor experiment with interaction between factors wherein observations follow an Inverse Gaussian model is considered. Analysis of the experiment is approached via an empirical Bayes procedure. The conjugate family of prior distributions is considered. Bayes and empirical Bayes estimators are derived. Application of the procedure is illustrated on a data set, which has previously been an...
full textempirical bayes analysis of two-factor experiments under inverse gaussian model
a two-factor experiment with interaction between factors wherein observations follow an inverse gaussian model is considered. analysis of the experiment is approached via an empirical bayes procedure. the conjugate family of prior distributions is considered. bayes and empirical bayes estimators are derived. application of the procedure is illustrated on a data set, which has previously been an...
full textTwo semi parametric empirical Bayes estimators
Parametric empirical Bayes PEB may perform poorly when the assumed prior distribution is seriously invalid Nonparametric empirical Bayes NEB is more robust since it imposes no restric tion on the prior But compared with the PEB the NEB may be ine cient for small to medium samples due to the large variation and under dispersion of the NPMLE of the prior Using Monte Carlo simulations we compare t...
full textEmpirical Bayes Estimators with Uncertainty Measures for NEF-QVF Populations
The paper proposes empirical Bayes (EB) estimators for simultaneous estimation of means in the natural exponential family (NEF) with quadratic variance functions (QVF) models. Morris (1982, 1983a) characterized the NEF-QVF distributions which include among others the binomial, Poisson and normal distributions. In addition to the EB estimators, we provide approximations to the MSE’s of t...
full textRegression Analysis under Inverse Gaussian Model: Repeated Observation Case
Traditional regression analyses assume normality of observations and independence of mean and variance. However, there are many examples in science and Technology where the observations come from a skewed distribution and moreover there is a functional dependence between variance and mean. In this article, we propose a method for regression analysis under Inverse Gaussian model when th...
full textMy Resources
Journal title
volume 15 issue 3
pages -
publication date 2004-09-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023