Lie Ideals and Generalized Derivations in Semiprime Rings

Authors

Abstract:

Let R be a 2-torsion free ring and L a Lie ideal of R. An additive mapping F : R ! R is called a generalized derivation on R if there exists a derivation d : R to R such that F(xy) = F(x)y + xd(y) holds for all x y in R. In the present paper we describe the action of generalized derivations satisfying several conditions on Lie ideals of semiprime rings.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Notes on Generalized Derivations on Lie Ideals in Prime Rings

Let R be a prime ring, H a generalized derivation of R and L a noncommutative Lie ideal of R. Suppose that usH(u)ut = 0 for all u ∈ L, where s ≥ 0, t ≥ 0 are fixed integers. Then H(x) = 0 for all x ∈ R unless char R = 2 and R satisfies S4, the standard identity in four variables. Let R be an associative ring with center Z(R). For x, y ∈ R, the commutator xy− yx will be denoted by [x, y]. An add...

full text

On Generalized Derivations of Semiprime Rings

Let F be a commuting generalized derivation, with associated derivation d, on a semiprime ring R. We show that d(x)[y, z] = 0 for all x, y, z ∈ R and d is central. We define and characterize dependent elements of F and investigate a decomposition of R relative to F . Mathematics Subject Classification: 16N60, 16W25

full text

Remarks on Generalized Derivations in Prime and Semiprime Rings

Let R be a ring with center Z and I a nonzero ideal of R. An additive mapping F : R → R is called a generalized derivation of R if there exists a derivation d : R → R such that F xy F x y xd y for all x, y ∈ R. In the present paper, we prove that if F x, y ± x, y for all x, y ∈ I or F x ◦ y ± x ◦ y for all x, y ∈ I, then the semiprime ring R must contains a nonzero central ideal, provided d I /...

full text

Derivations in semiprime rings and Banach algebras

Let $R$ be a 2-torsion free semiprime ring with extended centroid $C$, $U$ the Utumi quotient ring of $R$ and $m,n>0$ are fixed integers. We show that if $R$ admits derivation $d$ such that $b[[d(x), x]_n,[y,d(y)]_m]=0$ for all $x,yin R$ where $0neq bin R$, then there exists a central idempotent element $e$ of $U$ such that $eU$ is commutative ring and $d$ induce a zero derivation on $(1-e)U$. ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 10  issue None

pages  45- 54

publication date 2015-10

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023