Leap Zagreb indices of trees and unicyclic graphs

Authors

  • ShaohuiShaohui Wang Department of Mathematics and Computer Science, Adelphi University, Garden City, NY, USA.
Abstract:

By d(v|G) and d_2(v|G) are denoted the number of first and second neighborsof the vertex v of the graph G. The first, second, and third leap Zagreb indicesof G are defined asLM_1(G) = sum_{v in V(G)} d_2(v|G)^2, LM_2(G) = sum_{uv in E(G)} d_2(u|G) d_2(v|G),and LM_3(G) = sum_{v in V(G)} d(v|G) d_2(v|G), respectively. In this paper, we generalizethe results of Naji et al. [Commun. Combin. Optim. 2 (2017), 99-117], pertaining to trees and unicyclic graphs. In addition, we determine upper and lower boundsfor these leap Zagreb indices and characterize the extremal graphs.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

On leap Zagreb indices of graphs

The first and second Zagreb indices of a graph are equal, respectively, to the sum of squares of the vertex degrees, and the sum of the products of the degrees of pairs of adjacent vertices. We now consider analogous graph invariants, based on the second degrees of vertices (number of their second neighbors), called leap Zagreb indices. A number of their basic properties is established.

full text

The Hyper-Zagreb Index of Trees and Unicyclic Graphs

Topological indices are widely used as mathematical tools to analyze different types of graphs emerged in a broad range of applications. The Hyper-Zagreb index (HM) is an important tool because it integrates the first two Zagreb indices. In this paper, we characterize the trees and unicyclic graphs with the first four and first eight greatest HM-value, respectively.

full text

Sharp lower bounds for the Zagreb indices of unicyclic graphs

The first Zagreb index M1 is equal to the sum of the squares of the degrees of the vertices, and the second Zagreb index M2 is equal to the sum of the products of the degrees of pairs of adjacent vertices of the respective graph. In this paper we present the lower bound on M1 and M2 among all unicyclic graphs of given order, maximum degree, and cycle length, and characterize graphs for which th...

full text

On Comparing Variable Zagreb Indices for Unicyclic Graphs

Recently, the first and second Zagreb indices are generalized into the variable Zagreb indices which are defined by M1(G) = ∑ u∈V (d(u))2λ and M2(G) = ∑ uv∈E (d(u)d(v)), where λ is any real number. In this paper, we prove that M1(G)/n M2(G)/m for all unicyclic graphs and all λ ∈ (−∞, 0]. And we also show that the relationship of numerical value between M1(G)/n and M2(G)/m is indefinite in the d...

full text

Zagreb, multiplicative Zagreb Indices and Coindices of ‎graphs

‎Let G=(V,E) be a simple connected graph with vertex set V and edge set E. The first, second and third Zagreb indices of G are respectivly defined by: $M_1(G)=sum_{uin V} d(u)^2, hspace {.1 cm} M_2(G)=sum_{uvin E} d(u).d(v)$ and $ M_3(G)=sum_{uvin E}| d(u)-d(v)| $ , where d(u) is the degree of vertex u in G and uv is an edge of G connecting the vertices u and v. Recently, the first and second m...

full text

Multiplicative Zagreb Indices of Trees

Let G be a graph with vertex set V (G) and edge set E(G) . The first and second multiplicative Zagreb indices of G are Π1 = ∏ x∈V (G) deg(x) 2 and Π2 = ∏ xy∈E(G) deg(x) deg(y) , respectively, where deg(v) is the degree of the vertex v . Let Tn be the set of trees with n vertices. We determine the elements of Tn , extremal w.r.t. Π1 and Π2 . AMS Mathematics Subject Classification (2000): 05C05, ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 2

pages  179- 194

publication date 2018-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023