LEAD-FREE BNKT PIEZOELECTRIC ACTUATOR

Authors

  • A. Moosavi Materials and Energy Research Centre, karaj, Iran.
  • A. R. Aghaei Materials and Energy Research Centre, karaj, Iran.
  • M. A. Bahrevar Materials and Energy Research Centre, karaj, Iran.
Abstract:

An actuator is a device that converts input energy into mechanical energy. According to various types of input energy, various actuators have been advanced. Displacement in the electromagnetic, hydraulic and pneumatic actuators achieve by moving a piston via electromagnetic force or pressure, however the piezoelectric actuator (piezoceramic plates) displace directly. Therefore, accuracy and speed in the piezoelectric device are higher than other types of actuators. In the present work, the high-field electromechanical response of high-quality (1−x)(Bi 0.5Na0.5)TiO3–x(Bi0.5K0.5)TiO3 samples abbreviated to BNKTx with x = 0.18, 0.20, 0.22 and 0.24 ceramic materials across its MPB was investigated. The piezoelectrics and actuation characteristics were characterized. Ourresults indicate that x = 0.20, indeed, constitutes the best choice for the MPB composition in the system. Maximum of remanent polarization (37.5 μC cm−2) was obtained for x=0.20. High-field electromechanical responses were also obtained for BNKT0.20 samples. This material exhibited giant field induced strains of 0.13% under 1 kV mm -1 at room temperature.

Download for Free

Sign up for free to access the full text

Already have an account?login

similar resources

Lead-free multilayer piezoelectric transformer.

In this article, a multilayer piezoelectric transformer based on lead-free Mn-doped 0.94(Bi(12)Na(12))TiO(3)-0.06BaTiO(3) ceramics is presented. This piezoelectric transformer, with a multilayered construction in the thickness direction, is 8.3 mm long, 8.3 mm wide, and 2.3 mm thick. It operates in the second thickness extensional vibration mode. For a temperature rise of 20 degrees C, the tran...

full text

High Performance Lead-free Piezoelectric Material

Lead has recently been expelled from many commercial applications and materials (for example, from solder, glass and pottery glaze) owing to concerns regarding its toxicity. Lead zirconium titanate (PZT) ceramics are highperformance piezoelectric materials, which are widely used in sensors, actuators and other electronic devices; they contain more than 60 weight per cent lead. Although there ha...

full text

Control of a Clamped-free Beam by a Piezoelectric Actuator

We consider a controllability problem for a beam, clamped at one boundary and free at the other boundary, with an attached piezoelectric actuator. By Hilbert Uniqueness Method (HUM) and new results on diophantine approximations, we prove that the space of exactly initial controllable data depends on the location of the actuator. We also illustrate these results with numerical simulations. Mathe...

full text

Sintering of Lead-Free Piezoelectric Sodium Potassium Niobate Ceramics

The potassium sodium niobate, K0.5Na0.5NbO₃, solid solution (KNN) is considered as one of the most promising, environment-friendly, lead-free candidates to replace highly efficient, lead-based piezoelectrics. Since the first reports of KNN, it has been recognized that obtaining phase-pure materials with a high density and a uniform, fine-grained microstructure is a major challenge. For this rea...

full text

A lead-free piezoelectric transformer in radial vibration modes.

In this study, a disk-shaped piezoelectric transformer was fabricated using lead-free (K,Na)NbO(3)-based ceramics with high mechanical quality factor. The transformer can operate in the fundamental or the third radial vibration mode. The transformer is poled along the thickness direction. The top surface is covered by ring/dot silver electrodes separated by an annular gap which serve as the inp...

full text

Lead-free LiNbO3 nanowire-based nanocomposite for piezoelectric power generation

In a flexible nanocomposite-based nanogenerator, in which piezoelectric nanostructures are mixed with polymers, important parameters to increase the output power include using long nanowires with high piezoelectricity and decreasing the dielectric constant of the nanocomposite. Here, we report on piezoelectric power generation from a lead-free LiNbO3 nanowire-based nanocomposite. Through ion ex...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 13  issue 1

pages  58- 62

publication date 2016-03

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023