$k$-Total difference cordial graphs
Authors
Abstract:
Let $G$ be a graph. Let $f:V(G)to{0,1,2, ldots, k-1}$ be a map where $k in mathbb{N}$ and $k>1$. For each edge $uv$, assign the label $left|f(u)-f(v)right|$. $f$ is called a $k$-total difference cordial labeling of $G$ if $left|t_{df}(i)-t_{df}(j)right|leq 1$, $i,j in {0,1,2, ldots, k-1}$ where $t_{df}(x)$ denotes the total number of vertices and the edges labeled with $x$.A graph with admits a $k$-total difference cordial labeling is called a $k$-total difference cordial graphs. We investigate $k$-total difference cordial labeling of some graphs and study the $3$-total difference cordial labeling behaviour of star,bistar,complete bipartiate graph,comb,wheel,helm,armed crown etc.
similar resources
On k-total edge product cordial graphs
A k-total edge product cordial labeling is a variant of the well-known cordial labeling. In this paper we characterize graphs admitting a 2total edge product cordial labeling. We also show that dense graphs and regular graphs of degree 2(k − 1) admit a k-total edge product cordial labeling.
full textk-Remainder Cordial Graphs
In this paper we generalize the remainder cordial labeling, called $k$-remainder cordial labeling and investigate the $4$-remainder cordial labeling behavior of certain graphs.
full text3-difference cordial labeling of some cycle related graphs
Let G be a (p, q) graph. Let k be an integer with 2 ≤ k ≤ p and f from V (G) to the set {1, 2, . . . , k} be a map. For each edge uv, assign the label |f(u) − f(v)|. The function f is called a k-difference cordial labeling of G if |νf (i) − vf (j)| ≤ 1 and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labelled with x (x ∈ {1, 2 . . . , k}), ef (1) and ef (0) respectively den...
full text$4$-Total prime cordial labeling of some cycle related graphs
Let $G$ be a $(p,q)$ graph. Let $f:V(G)to{1,2, ldots, k}$ be a map where $k in mathbb{N}$ and $k>1$. For each edge $uv$, assign the label $gcd(f(u),f(v))$. $f$ is called $k$-Total prime cordial labeling of $G$ if $left|t_{f}(i)-t_{f}(j)right|leq 1$, $i,j in {1,2, cdots,k}$ where $t_{f}(x)$ denotes the total number of vertices and the edges labelled with $x$. A graph with a $k$-total prime cordi...
full textFurther results on total mean cordial labeling of graphs
A graph G = (V,E) with p vertices and q edges is said to be a total mean cordial graph if there exists a function f : V (G) → {0, 1, 2} such that f(xy) = [(f(x)+f(y))/2] where x, y ∈ V (G), xy ∈ E(G), and the total number of 0, 1 and 2 are balanced. That is |evf (i) − evf (j)| ≤ 1, i, j ∈ {0, 1, 2} where evf (x) denotes the total number of vertices and edges labeled with x (x = 0, 1, 2). In thi...
full textSigned total Italian k-domination in graphs
Let k ≥ 1 be an integer, and let G be a finite and simple graph with vertex set V (G). A signed total Italian k-dominating function (STIkDF) on a graph G is a functionf : V (G) → {−1, 1, 2} satisfying the conditions that $sum_{xin N(v)}f(x)ge k$ for each vertex v ∈ V (G), where N(v) is the neighborhood of $v$, and each vertex u with f(u)=-1 is adjacent to a vertex v with f(v)=2 or to two vertic...
full textMy Resources
Journal title
volume 51 issue 1
pages 121- 128
publication date 2019-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023