Joining of the 5083 aluminum alloy using the bobbin tool friction stir welding technique

Authors

Abstract:

Conventional fusion welding of aluminum alloys results in coarse-grained structure, inevitable defects, and significant softening in the welding region. Friction stir welding with bobbin tool is a technique of friction stir welding method that has a great potential for developing applications of friction stir welding method in marine, aerospace, and automotive industries due to having an extra shoulder. Sheets of 5083 aluminum alloy with a thickness of 3 mm were welded using the bobbin tool friction stir welding method to assess the feasibility of similar joining. The effect of different process variables such as shoulder pinching gap, transverse speed and tool rotation speed was investigated. The results showed that a sound joint is achieved at a transverse speed of 13 mm / min and a tool rotation speed of 1350 rpm. The results of tensile test showed that the obtained joint efficiency is 94.5%, which is higher than the joint efficiency of fusion methods and comparable to the joint efficiency of conventional friction stir welding. Microscopic evaluation of the fracture surface of welded specimens showed that for similar joints, the dominant fracture mechanism is ductile fracture.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Analysis and Comparison of Friction Stir Welding and Laser Assisted Friction Stir Welding of Aluminum Alloy

Friction Stir Welding (FSW) is a solid-state joining process; i.e., no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. Laser Assisted Friction Stir Welding (LAFS...

full text

Friction stir welding of dissimilar joint of aluminum alloy 5083 and commercially pure titanium

In this study, commercially pure titanium and aluminum alloy 5083 in connection rotational speed of 1120 rpm and a feed rate of 50 mm per minute for butt welding by friction stir welding has been successfully completed. Micro-structure, hardness and tensile test was conducted on the connection. Welding area is a composite of aluminum and titanium particles that the particles plays an important ...

full text

Friction stir welding of dissimilar joint of aluminum alloy 5083 and commercially pure titanium

In this study, commercially pure titanium and aluminum alloy 5083 in connection rotational speed of 1120 rpm and a feed rate of 50 mm per minute for butt welding by friction stir welding has been successfully completed. Micro-structure, hardness and tensile test was conducted on the connection. Welding area is a composite of aluminum and titanium particles that the particles plays an important ...

full text

Tool Durability Maps for Friction Stir Welding of an Aluminum Alloy

Friction stir welding is not used for hard alloys because of premature tool failure. A scheme is created which exploits the physical three-dimensional heat and mass flow models, and implements them into a fast calculation algorithm, which when combined with damage accumulation models, enables the plotting of tool durability maps which define the domains of satisfactory tool life. It is shown th...

full text

The Mechanical Properties Evaluation of the Welded Sheets of AA 3105 Aluminum Alloy Using Friction Stir Spot Welding (FSSW)

Friction stir spot welding (FSSW) is a type of solid state welding that is used in the connection of small pieces and light metals such as aluminum alloy especially. The technical problem during melting of aluminum alloys is one of the most important reasons for developing application of friction stir welding for aluminum alloys. In this research, the effects of important processing parameters ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 2

pages  25- 37

publication date 2022-01

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023