Involutiveness of linear combinations of a quadratic or tripotent matrix and an arbitrary matrix
Authors
Abstract:
In this article, we characterize the involutiveness of the linear combination of the forma1A1 +a2A2 when a1, a2 are nonzero complex numbers, A1 is a quadratic or tripotent matrix,and A2 is arbitrary, under certain properties imposed on A1 and A2.
similar resources
involutiveness of linear combinations of a quadratic or tripotent matrix and an arbitrary matrix
in this article, we characterize the involutiveness of the linear combination of the forma1a1 +a2a2 when a1, a2 are nonzero complex numbers, a1 is a quadratic or tripotent matrix,and a2 is arbitrary, under certain properties imposed on a1 and a2.
full textdeterminant of the hankel matrix with binomial entries
abstract in this thesis at first we comput the determinant of hankel matrix with enteries a_k (x)=?_(m=0)^k??((2k+2-m)¦(k-m)) x^m ? by using a new operator, ? and by writing and solving differential equation of order two at points x=2 and x=-2 . also we show that this determinant under k-binomial transformation is invariant.
15 صفحه اولOn Nonsingularity of Linear Combinations of Tripotent Matrices
Let T1 and T2 be two commuting n × n tripotent matrices and c1, c2 two nonzero complex numbers. The problem of when a linear combination of the form T = c1T1 + c2T2 is nonsingular is considered. Some other nonsingularitytype relationships for tripotent matrices are also established. Moreover, a statistical interpretation of the results is pointed out.
full textNew solution of fuzzy linear matrix equations
In this paper, a new method based on parametric form for approximate solu-tion of fuzzy linear matrix equations (FLMEs) of the form AX = B; where Ais a crisp matrix, B is a fuzzy number matrix and the unknown matrix X one,is presented. Then a numerical example is presented to illustrate the proposedmodel.
full textOn a quadratic matrix equation associated with an M-matrix∗
We study the quadratic matrix equation X2 − EX − F = 0, where E is diagonal and F is an M -matrix. Quadratic matrix equations of this type arise in noisy Wiener–Hopf problems for Markov chains. The solution of practical interest is a particular M -matrix solution. The existence and uniqueness of M -matrix solutions and numerical methods for finding the desired M -matrix solution are discussed b...
full textMy Resources
Journal title
volume 42 issue 3
pages 595- 610
publication date 2016-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023