Investigation of Photovoltaic Properties of 1,8-Naphthalimide Dyes in Dye-sensitized Solar Cells

Authors

  • H. Shaki Department of Chemical Engineering, Golestan University, P. O. Box: 49138 – 15759, Gorgan, Iran.
  • M. Hosseinnezhad Department of Organic Colorants, Institute for Color Science and Technology, P.O. Box 16656118481, Tehran, Iran | Center of Excellence for Color Science and Technology, Institute for Color Science and Technology, P.O. Box 16656118481, Tehran, Iran
Abstract:

In this paper we selected two metal-free dyes (Dye 1 and Dye 2) based on 1,8-naphthalimide. The proposed dyes were sensitized from acenaphthene as the starting material by standard reactions. Spectrophotometric measurements of the organic dyes in DMF and on TiO2 substrate were carried out in order to assess changes in the status of the dyes. Maximum absorption wavelengths for Dye 1 and Dye 2 in solution are 427 nm and 434 nm and on TiO2 films are 451 nm and 455 nm, respectively. Finally, the proposed dyes were used as sensitizer in a home-made dye solar cell structure and their photovoltaic properties were investigated. The conversion efficiency for Dye 1 and Dye 2 are 1.19 % and 1.34 %, respectively.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Acid azo dyes for efficient molecular photovoltaic: study of dye-sensitized solar cells performance

In this paper we sensitized three free-metal azo days Dye 1, Dye 2 and Dye 3 based on 1,8-naphthalimide with n-propyl as the electron donor group. We used sulfonic acid and hydroxyl substituents as the electron acceptor anchoring group in synthesized dyes. The proposed dyes were sensitized from acenaphthene as the starting material by standard reactions and characterized by different techniques...

full text

Synthesis and Investigation of Photovoltaic Properties of New Organic Dye in Solar Cells Device

In this paper, we designed and synthesized free-metal dyes based on indoline. The proposed dyes were synthesized from phenothiazine as the starting material by standard reactions. The chemical structure of the synthesized dye was confirmed using FT-IR, 1HNMR and DSC techniques. Spectrophotometric measurements of the organic dyes in acetonitrile and on a TiO2 substrate ...

full text

Investigation of Indigo/thioindigo Tandem Dye-Sensitized Solar Cells

In this paper we used two free-metal organic dyes (dye 1 and dye 2) based on indigo and thioindigo with cyanoacrylic acid as the electron acceptor group. The proposed dyes were sensitized from naphalene as the starting material by standard reactions and characterized by different analytical techniques and UV-Visible spectroscopy after purification. Spectrophotometric measurements of the organic...

full text

Synthesis and Application of Two Organic Dyes Based on Indoline in Dye-Sensitized Solar Cells

In this paper we sensitized two new organic days dye 1 and dye 2 based on thioindigo with phenothiazine as the electron donor group. We used acrylic acid and cyanoacrylic acid as the electron acceptor anchoring group in dye 1 and dye 2 respectively. The proposed dyes were sensitized from phenothiazine as the starting material by standard reactions and characterized by different techniques such ...

full text

The Construction and Comparison of Dye-Sensitized Solar Cells with Blackberry and N719 Dyes

In a dye-sensitized solar cell (DSSC), the amount of light absorption dependson the design of the pigments, which determines the strength of light absorption and theoptical range of the cell. In this paper, we have constructed and studied two fairly similarpattern of DSSCs in structure. The thickness of TiO2 used for both cells is taken to be 2μm. We have used an industrial N719 dye for one of ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 11  issue 4

pages  253- 258

publication date 2018-11-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023