Investigation of Hydroxylated Carbon Felt Electrode in Vanadium Redox Flow Battery by Using Optimized Supporting Electrolyte

Authors

  • Abdolmajid Ghasemi Institute of Mechanics, Iranian Space Research Center, Shiraz, Iran
  • Mohsen Babaiee Institute of Mechanics, Iranian Space Research Center, Shiraz, Iran
  • Rahim Eqra Institute of Mechanics, Iranian Space Research Center, Shiraz, Iran
Abstract:

Traditional vanadium batteries use pure sulfuric acid as electrolyte, but H2SO4 does not absorb enough vanadium ions to make the electrolyte an efficient energy source. This study investigates the effect of hydroxylation process on electrochemical and operational properties of carbon felt electrode in VOSO4 solution with an optimized supporting electrolyte (a mixture of six parts HCl and 2.5 parts H2SO4). Carbon felt electrode was hydroxylated with mixed acids of H2SO4 and HNO3 in a stainless steel autoclave for 6 h. Then thermal treatment of electrode was performed at 400 oC for 5h. Obtained results of cyclic voltammograms showed that when the carbon felt was hydroxylated, both oxidation and reduction peak currents were increased remarkably and the peak potential separation is decreased from 356 mV to 246 mV, suggesting that the electrochemical activity and the kinetic reversibility on HCF electrode were improved compared to the pristine one. According to results of electrochemical impedance spectra, charge transfer resistance (Rct) was calculated to be 648 Ω for pristine carbon felt. The obtained Rct at hydroxylated electrode (176 Ω) shows a decrease of about 73 % in Rct. Charge-discharge profiles of two cells assembled with the pristine carbon felt (cell A), and hydroxylated carbon felt (cell B) showed that energy, voltage and coulombic efficiencies were significantly improved by using the hydroxylated electrodes inside the cell of vanadium redox flow battery.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Enhanced performance of a Bi - modified graphite felt as the positive electrode of a vanadium redox flow battery

Graphite felt modified with nanodispersed bismuth was studied as electrode in the positive half-cell of a vanadium redox flow battery (VRFB). The felt was easily modified by immersion in a Bi2O3 solution followed by thermal reduction at 450°C in air. Despite the low metal content (1 at. %), the Bi-modified felt showed an excellent electrochemical performance (at 1 mVs) in terms of anodic and ca...

full text

Simultaneous Control of Active and Reactive Powers of Vanadium Redox Flow Battery Systems in Flexible Microgrids

This paper discusses the control of flexible microgrids, consisting of a Redox Flow Batteries (RFB) and a new power conditioning system (PCS) for the RFB. Considering the importance of energy storage, this study is essential in power systems that are developed cautiously. RFB is connected to power system by a DC/DC or DC/AC converter to produce a DC voltage. It is very important that this conve...

full text

Graphene‐Nanowall‐Decorated Carbon Felt with Excellent Electrochemical Activity Toward VO2 +/VO2+ Couple for All Vanadium Redox Flow Battery

3D graphene-nanowall-decorated carbon felts (CF) are synthesized via an in situ microwave plasma enhanced chemical vapor deposition method and used as positive electrode for vanadium redox flow battery (VRFB). The carbon fibers in CF are successfully wrapped by vertically grown graphene nanowalls, which not only increase the electrode specific area, but also expose a high density of sharp graph...

full text

A new strategy for integrating abundant oxygen functional groups into carbon felt electrode for vanadium redox flow batteries

The effects of surface treatment combining corona discharge and hydrogen peroxide (H2O2) on the electrochemical performance of carbon felt electrodes for vanadium redox flow batteries (VRFBs) have been thoroughly investigated. A high concentration of oxygen functional groups has been successfully introduced onto the surface of the carbon felt electrodes by a specially designed surface treatment...

full text

Pore-scale analysis of effects of electrode morphology and electrolyte flow conditions on performance of vanadium redox flow batteries

A 3D pore-scale transport resolved model is used to study the performance characteristics of a vanadium redox flow battery (VRFB) with various electrode morphologies under different operating conditions. Three electrode structures are reconstructed from X-ray computed tomography (XCT) images of porous carbon felt electrode materials. The local vanadium concentration, overpotential, current dens...

full text

simultaneous control of active and reactive powers of vanadium redox flow battery systems in flexible microgrids

this paper discusses the control of flexible microgrids, consisting of a redox flow batteries (rfb) and a new power conditioning system (pcs) for the rfb. considering the importance of energy storage, this study is essential in power systems that are developed cautiously. rfb is connected to power system by a dc/dc or dc/ac converter to produce a dc voltage. it is very important that this conve...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 4

pages  54- 59

publication date 2016-11-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023