Investigation of Differentiated Embryonic Stem Cells Growth on Optimized Porous Polymeric Bed with Fuzzy System

Authors

  • Yazdian, Fatemeh Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
  • Behroozi, Farnaz Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
  • Janghorbani, Amin Department of Biotechnology, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran.
  • Satarian, Leila Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
  • Shahmoradi, Saleheh Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
  • Tabandeh, Fatemeh Department of Industrial Biotechnology and Environment, National Research Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
Abstract:

Introduction: Age-related macular degeneration (AMD) is one of the retina diseases in which retinal pigment epithelium cells are degraded and lead to blindness. Available treatments only slow down the progression of it. In this study, human embryonic stem cells (hESCs) differentiated into retinal pigment epithelium cells were cultured on a polycaprolactone scaffold. Methods: The optimization of the diameter of the produced scaffolds by electrospinning method was done using the fuzzy method for the first time. To improve cell adhesion and proliferation, related parameters to alkaline hydrolysis method were optimized and hydrophobic surface of scaffold was modified. After in vitro analysis, cells were cultured on different groups of scaffolds. In vivo analyses were done and cells culture on scaffolds observed. Results: The optimal parameters for the scaffold based on the fuzzy model were 18.1 kV for voltage, 0.07 g / ml for solution concentration and 115 nm for scaffold diameter, respectively. The immersion time of the scaffold in alkaline solution and concentration of solution were measured 97 min and 3.7 M, respectively. The treated scaffold had a higher degradation rate and water adsorption. MTT-Assay results showed that scaffolds with modified surfaces had a higher amount of cell viability and proliferation after 7 days. SEM image results confirmed this finding after almost two months. Additionally, the results of ICC test showed that after passing this time, cells kept their RPE and epithelium. Conclusion: Based on the results, the hydrolyzed scaffold is a suitable substrate for cell proliferation and can be a good option for AMD treatment.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Differentiation of Embryonic Stem Cells into Cardiomyocytes on Polymeric Substrate

Among the current biomaterial applications, the use of biopolymers as cell scaffolds could aid the development of stem cell-based therapies aimed at replacing tissue loss due to injuries or diseases, such as during myocardial infarction. Embryonic stem cells (ESC) provide a great therapeutic potential for cardiac tissue. In this study, the interaction of mouse embryonic stem cells (mESC) with p...

full text

Construction of Vascular Tissues with Macro-Porous Nano-Fibrous Scaffolds and Smooth Muscle Cells Enriched from Differentiated Embryonic Stem Cells

Vascular smooth muscle cells (SMCs) have been broadly used for constructing tissue-engineered blood vessels. However, the availability of mature SMCs from donors or patients is very limited. Derivation of SMCs by differentiating embryonic stem cells (ESCs) has been reported, but not widely utilized in vascular tissue engineering due to low induction efficiency and, hence, low SMC purity. To add...

full text

A vector-based system for the differentiation of mouse embryonic stem cells toward germ-line cells

Objective(s):To culture thein vitro mouse embryonic stem cells (mESCs) and to direct their  differentiation to germ-line cells; in present study we used a vector backbone containing the fusion construct Stra8-EGFP to select differentiated ES cells that entered meiosis.  Retinoic acid was used to differentiate embryonic stem cells to germ cells. Materials and Methods: A fragment of Stra8 gene pr...

full text

Evaluation of effect of chick embryonic notochord on neural induction of mouse embryonic stem cells

Introduction: The aim of this study was evaluate the ability of notochord to induce neural induction and/or differentiation of mouse embryonic stem cell to neuron and motor neuron, respectively. Methods: In order to produce embryoid bodies, ES cells line Royan B1 were grown in suspension in the absence of LIF for 4 days. EBs were divided into 4 groups. EBs in group 1 & 2 were further cultur...

full text

Differentiation of Mouse Embryonic Stem Cells into Hematopoietic Cells

Purpose: Differentiation of Mouse embryonicstem cells into Hematopoietic cells. Materials and Methods: In this study, we used EB formation system for Hematopoietic differentiation of mouse embryonic stem cell (Royan B1) in suspension culture. EBs cultured in medium with Hematopoietic inducer cytokines (SCF, TPO, GMCSF, IL3, Flt3 and EPO) .presence of hematopoietic differentiated cell assessed ...

full text

Effects of Treatment with Bone Morphogenetic Protein 4 and Co-culture on Expression of Piwil2 Gene in Mouse Differentiated Embryonic Stem Cells

Background Specific growth factors and feeder layers seem to have important roles in in vitro embryonic stem cells (ESCs) differentiation. In this study,the effects of bone morphogenetic protein 4 (BMP4) and mouse embryonic fibroblasts (MEFs) co-culture system on germ cell differentiation from mouse ESCs were studied. MaterialsAndMethods Cell suspension was prepared from one-day-old embryoid bo...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 29  issue 9

pages  4106- 4122

publication date 2021-12

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023