Investigation of convective heat transfer, pressure drop and efficiency of ZnO/water nanofluid in alternating elliptical axis tubes

Authors

  • Ahmadreza Sajadi Faculty of Engineering, Shahrekord University, Shahrekord, Iran
  • Sasan Talebi Faculty of Engineering, Shahrekord University, Shahrekord, Iran
Abstract:

In this study, for the first time, the heat transfer and the pressure drop of zinc oxide nanoparticles in alternating elliptical axis (AEA) tube have been investigated experimentally. The zinc oxide nanoparticles were at volumetric concentrations 1% and 2%. The base fluid was heat transfer oil and the experiments were conducted at constant wall temperature. Also, the study was done in Reynolds number range of 400- 1900. The experimental results show that the heat transfer, pressure drop and, the efficiency of AEA tubes are higher than the circular tube. The heat transfer rate and pressure drop increase by flattening the tube and adding nanoparticles. To compare the heat transfer and pressure drop simultaneously, an efficiency parameter is defined. This parameter shows how much increase in heat transfer can be obtained for the pressure drop of a circular tube with the same hydraulic diameter as the AEA tube. Using AEA tube with nanoparticles increases heat transfers by up to threefold, and pressure drop by up to twofold, resulting in an overall twofold increase in the efficiency.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Comparison of convective heat transfer of turbulent nanofluid flow through helical and conical coiled tubes

Application of nanofluid and coiled tubes are two passive methods for increasing the heat transfer. In the present study, the turbulent flows of water and nanofluid in coiled tubes heat exchanger were numerically studied. CuO-water nanofluid containing 1 vol% copper oxide nanoparticles was used and single-phase approach was considered for nanofluid flow. The effect of different geometrical para...

full text

Numerical investigation of turbulent flow heat transfer and pressure drop of AL2O3/water nanofluid in helically coiled tubes Original Citation

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any ...

full text

Effect of Al2O3-water nanofluid on heat transfer and pressure drop in a three-dimensional microchannel

The fluid flow and heat transfer in a three-dimensional microchannel filled with Al2O3- water nanofluid is numerically investigated. The hybrid scheme is used to discretize the convection terms and SIMPLER algorithm is adopted to couple the velocity and pressure field in the momentum equations. The thermal and flow fields were analyzed using different volume fractions of n...

full text

Effect of Al2O3-water nanofluid on heat transfer and pressure drop in a three-dimensional microchannel

The fluid flow and heat transfer in a three-dimensional microchannel filled with Al2O3- water nanofluid is numerically investigated. The hybrid scheme is used to discretize the convection terms and SIMPLER algorithm is adopted to couple the velocity and pressure field in the momentum equations. The thermal and flow fields were analyzed using different volume fractions of n...

full text

numerical investigation of tub side heat transfer and pressure drop in helically corrugated tubes

this paper presents a three-dimensional numerical investigation carried out in turbulent forced convection in a tube with helical ribs. enhancement of heat transfer using helically corrugated tubes has beenstudied experimentally by many researchers but there exist a few published numerical analyses results. the paper also introduces the results of heat transfer and friction factor data for inco...

full text

Modeling of TiO2-water Nanofluid Effect on Heat Transfer and Pressure Drop

This paper reports a numerical study on the force convection heat transfer and flow characteristics of a nanofluid containing water and Tio2 with various volume fractions (0.002

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 3

pages  203- 215

publication date 2020-09-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023