Introducing New Antimalarial Analogues of Chloroquine and Amodiaquine: A Narrative Review
Authors
Abstract:
Antimalarial drugs with the 4-aminoquinoline scaffold such as the important drugs, chloroquine (CQ) and amodiaquine (AQ), have been used to prevent and treat malaria for many years. The importance of these drugs is related to their simple usage, high efficacy, affordability, and cost-effectiveness of their synthesis. In recent years, with the spread of parasite resistance to CQ and cross-resistance to its other analogues have decreased their consumption in many geographical areas. On the other hand, AQ is an effective antimalarial drug which its usage has been restricted due to hepatic and hematological toxicities. The significance of the quinoline ring at quinoline-based antimalarial drugs has prompted research centers and pharmaceutical companies to focus on the design and synthesis of new analogues of these drugs, especially CQ and AQ analogues. Accordingly, various derivatives have been synthesized and evaluated in vitro and in vivo against the resistant strains of the malaria parasite to solve the problem of drug resistance. Also, the pharmacokinetic properties of these compounds have been evaluated to augment their efficacy and diminish their toxicity. Some of these analogues are currently in clinical and preclinical development. Consequently, the recent researches showed yet 4-aminoquinoline scaffold is active moiety in new compounds with antiplasmodial activity. Hence, the aim of this review article is to introduce of the novel synthetic analogues of CQ and AQ, which may constitute the next generation of antimalarial drugs with the 4-aminoquinoline scaffold.
similar resources
introducing new antimalarial analogues of chloroquine and amodiaquine: a narrative review
antimalarial drugs with the 4-aminoquinoline scaffold such as the important drugs, chloroquine (cq) and amodiaquine (aq), have been used to prevent and treat malaria for many years. the importance of these drugs is related to their simple usage, high efficacy, affordability, and cost-effectiveness of their synthesis. in recent years, with the spread of parasite resistance to cq and cross-resist...
full textساخت آنالوگهای جدید 4- فلوروآمودیاکین و بررسی اثرات ضد مالاریایی دارو علیه سویههای حساس و مقاوم به کلروکین پلاسمودیوم فالسیپاروم
Background and Objective: Resistance to chloroquine (CQ) in Plasmodium falciparum malaria has become a major health concern in the developing countries. This problem has prompted investigators for finding alternative antimalarials that may be effective against resistant strains. Amodiaquine (AQ) is an antimalarial which is effective against many chloroquine-resistant strains of P. falciparum. H...
full text4-Aminoquinolines: Chloroquine, Amodiaquine and Next-Generation Analogues
For several decades, the 4-aminoquinolines chloroquine (CQ) and amodiaquine (AQ) were considered the most important drugs for the control and eradication of malaria. The success of this class has been based on excellent clinical efficacy, limited host toxicity, ease of use and simple, cost-effective synthesis. Importantly, chloroquine therapy is affordable enough for use in the developing world...
full textSynthesis and study of effects of new 4-chloro – amodiaquine analogues against two resistant and sensitive forms to chloroquine Plasmodium Falciparum, in vitro
Background: Resistance to chloroquine (CQ) in Plasmodium falciparum malaria has become a major health concern of the developing countries.This resistance has prompted a re-examination of the pharmacology of alternative antimalarials that may be effective against resistant strains. Amodiaquine (AQ) is a 4-aminoquinoline antimalarial which is effective against many chloroquine-resistant strains o...
full textComparative mutagenic and genotoxic effects of three antimalarial drugs, chloroquine, primaquine and amodiaquine.
Comparative mutagenic and genotoxic effects of three antimalarial drugs, chloroquine, primaquine and amodiaquine, were assessed in the Ames mutagenicity assay (in strains TA97a, TA100, TA102 and TA104) and in vivo sister chromatid exchange (SCE) and chromosome aberration (CA) assays in bone marrow cells of mice. These are the most commonly used antimalarial drugs available at present throughout...
full textMy Resources
Journal title
volume 42 issue 2
pages 115- 128
publication date 2017-03-01
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023