Integration of remote sensing and meteorological data to predict flooding time using deep learning algorithm

Authors

Abstract:

Accurate flood forecasting is a vital need to reduce its risks. Due to the complicated structure of flood and river flow, it is somehow difficult to solve this problem. Artificial neural networks, such as frequent neural networks, offer good performance in time series data. In recent years, the use of Long Short Term Memory networks hase attracted much attention due to the faults of frequent neural networks. In this study, it is tried to predict the daily discharge of the Aqqala station in Golestan provice, for the next three days, using Long Short Term Memory network. This network is very suitable for time series predictions, due to its special structure and ability to learn long-term dependencies. On the other hand, the desired network is stable and contains the maximum default parameters, which indicates its usability for other regions. Also, this algorithm has the ability to use topography and flow data from other stations in the region. To predict the discharge at the target station, several data combinations; the discharge data of Aqqala station alone and together with its upstream stations, the elevation model of Aqqala city and Golestan province were used as network inputs. The present research outcome was compared with simple regression network, support vector machine-regression, and frequent neural network. The results show that Long Short Term Memory network is superior to other networks with Nash-Sutcliffe Efficiency values above 91%. In future study, authors are going to to use other influential data on flood occurrence as well as network development into fully automated network.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Exploration of Kahang porphyry copper deposit using advanced integration of geological, remote sensing, geochemical, and magnetics data

The purpose of mineral exploration is to find ore deposits. The main aim of this work is to use the fuzzy inference system to integrate the exploration layers including the geological, remote sensing, geochemical, and magnetic data. The studied area was the porphyry copper deposit of the Kahang area in the preliminary stage of exploration. Overlaying of rock units and tectonic layers were used ...

full text

Drought Analysis of Alvand Boundary River Using Remote Sensing Data

Extended abstract 1- Introduction       The study of the behavior of rivers in the arid and dry areas is one of the most important tasks in the country. Because the area has increased the effects of drought due to the sensitivity of the area and rainfall shortage, it causes changes in the flow and sediment regime, water resources, agriculture, and so on. Since plants react more precisely to t...

full text

Brief communication “The integration of remote sensing and meteorological data for monitoring irrigation demand in Cyprus”

This paper examines and evaluates the integrated use of satellite remote sensing and meteorological data for estimating crop water requirements over agricultural areas of Cyprus. Intended purpose of this project is to estimate evapotranspiration using modeling techniques, satellite and meteorological data for monitoring irrigation demand. ETc was calculated with the FAO Penman-Monteith method b...

full text

Monitoring Meteorological Drought in Iran Using Remote Sensing and Drought Indices

Drought is a major environmental disaster in many parts of the world. Knowledge about the timing, severity and extentof drought can aid planning and decision-making. Drought indices derived from in-situ meteorological data have coarsespatial and temporal resolutions, thus, obtaining a real-time drought condition over a large area is difficult. This studyused advanced very high resolution radiom...

full text

Investigation of periodic changes of the Oman Sea coastline using remote sensing data and spatial analysis

Extended abstract   1- Introduction Coastal environments are one of the most sensitive environmental systems under the influence of dominant hydrodynamic processes. Coastal changes and evolution are occurring very fast. Coastal areas are now gradually becoming known as severe natural and man-made disturbances, including sea levels rising, coastal erosion and sedimentation, and over-exploitat...

full text

Detecting Surface Waters Using Data Fusion of Optical and Radar Remote Sensing Sensor

Identification and monitoring of surface water using remote sensing have become very important in recent decades due to its importance in human needs and political decisions. Therefore, surface water has been studied using remote sensing systems and Sentinel-1 and Sentinel-2 sensors in this study. In this paper, two data fusion approaches and decision fusion improve the accuracy of surface wate...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 10  issue 2

pages  19- 38

publication date 2022-11

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023