Influence of Operational Parameters and Kinetic Modelling of Catalytic Wet Air Oxidation of Phenol by Al/Zr Pillared Clay Catalyst

Authors

  • John Moma Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, P/Bag 3, WITS 2050, Johannesburg, SOUTH AFRICA
  • Maloyi Jeffey Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, P/Bag 3, WITS 2050, Johannesburg, SOUTH AFRICA|Advanced Materials Division, MINTEK, Private Bag X3015, Randburg 2125, SOUTH AFRICA
  • Thabang Ntho Advanced Materials Division, MINTEK, Private Bag X3015, Randburg 2125, SOUTH AFRICA
Abstract:

Single and mixed oxide Al/Zr-pillared clay (Al/Zr-PILC) catalysts were synthesized and tested for catalytic wet air oxidation (CWAO) of aqueous phenol solution under milder conditions, in a semi-batch reactor. The catalysts were synthesized from natural bentonite clay using ultrasonic treatment during the aging and intercalation steps and were characterized using High Resolution Scanning Electron Microscopy-Energy Dispersive angle X-ray spectrometry (HRSEM-EDX), powder X-ray diffraction (p-XRD), nitrogen adsorption/desorption, Fourier Transforms InfraRed Spectroscopy (FTIR) and zeta potential. Successful pillaring of aluminum and zirconium oxides into the clay was confirmed by p-XRD with increased basal spacing (1.92 nm) and higher specific surface area (230 m2/g). The influence of stirrer speed (200-1000 rpm), catalyst dosage (1-3 g/L), initial pH (1-3), initial phenol concentration (500-1500 mg/L), the effect of temperature (80-150 °C) and oxygen pressure (5-15 bar) was evaluated on phenol conversion and their reaction kinetics. At the optimum conditions of initial pH of 3, catalyst dosage of 2 g/L, initial phenol concentration of 1000 mg/L, reaction temperature of 100 °C, and oxygen pressure of 10 bar, the complete removal of phenol was achieved by Al/Zr-PILC within 120 min. The CWAO process was well-described by the first-order power rate law kinetics model. The apparent activation energy of the reaction calculated by Arrhenius equation was 21.306 kJ/mol.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Kinetic modelling of catalytic wet air oxidation of phenol by simulated annealing

A detailed reaction network for the catalytic wet air oxidation (CWAO) of phenol on a CuO/ -Al2O3 catalyst is proposed in this study. The reaction network proposed accounts for all detected intermediate products of phenol oxidation overcoming the usual lumping of compounds. The model is composed by several consecutive and parallel reactions. The parameters of the model were adjusted using exper...

full text

Wet air oxidation of phenol using active carbon as catalyst

Catalytic wet air oxidation is a promising alternative for the treatment of phenolic waste water which cannot be treated in conventional sewage plants. Catalytic wet air oxidation of an aqueous phenol solution was conducted in a ®xed bed reactor operating in trickle ̄ow regime. Either active carbon or a commercial copper oxide supported over -alumina was used as catalyst. The performance of bot...

full text

Catalytic wet air oxidation of aqueous solution of phenol over Pt/CNF catalyst

The catalytic wet air oxidation (CWAO) of phenol has been studied in trickled bed reactor using 2 wt.% platinum supported on carbon nanofibers (Pt/CNF) as catalyst. The catalyst was prepared by incipient wetness impregnation, and characterized by N2 adsorption, XRD and TEM. The operational variables studied and their range were: total air pressure, temperature, catalyst load, air and liquid flo...

full text

Bimetallic catalysts for continuous catalytic wet air oxidation of phenol.

Catalytic wet oxidation has proved to be effective at eliminating hazardous organic compounds, such as phenol, from waste waters. However, the lack of active long-life oxidation catalysts which can perform in aqueous phase is its main drawback. This study explores the ability of bimetallic supported catalysts to oxidize aqueous phenol solutions using air as oxidant. Combinations of 2% of CoO, F...

full text

determination of olanzapine and thiourea using electrodes modified by dna and film of copper-cobalt hexacyanoferrate & investigation of electro-oxidation of some catechol derivatives in the presence of 4-phenylsemicarbazid

چکیده هدف از این کار بررسی الکترواکسیداسیون کتکول و مشتقات آن در حضور 4-فنیل سمی کاربامازید بوده است اکسیداسیون کتکولها ترکیبات نا پایدار کینونها را تولید می کنند که این ترکیبات می تواند در واکنش مایکل بعنوان پذیرنده نوکلئوفیل عمل نمایند. در ادامه اکسایش کتکولهای (a-c1) را درحضور 4-فنیل سمی کاربامازید در محلول آب/استونیتریل (90/10)بوسیله ولتامتری چرخه ای و کولن متری در پتانسیل ثابت مورد بررسی ...

15 صفحه اول

investigation of effective parameters on the rigidity of light composite diaphragms (psscb) by fem

در این رساله با معرفی سقف های psscb متشکل از ترکیب ورق های فولادی ذوزنقه ای و تخته های سیمانی الیافی به عنوان سقف های پیش ساخته (سازگار با سیستم سازه ای قاب های فولادی سبک) به بررسی پارامترهای موثر بر صلبیت سقف، پرداخته می شود. در تحقیق حاضر ابتدا به مدل سازی دو نمونه سقف آزمایش شده، به روش اجزاء محدود با استفاده از نرم افزار تحلیلی abaqus ver 6.10 پرداخته شده است. نمونه های ساخته شده تحت اعما...

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 38  issue 6

pages  189- 203

publication date 2019-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023