Incidence dominating numbers of graphs

Authors

  • Abolfazl . Tehranian Department of Mathematic, Islamic Azad University, Science and Research Branch, Tehran, Iran
Abstract:

In this paper, the concept of incidence domination number of graphs  is introduced and the incidence dominating set and  the incidence domination number  of some particular graphs such as  paths, cycles, wheels, complete graphs and stars are studied.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Energy of Graphs, Matroids and Fibonacci Numbers

The energy E(G) of a graph G is the sum of the absolute values of the eigenvalues of G. In this article we consider the problem whether generalized Fibonacci constants $varphi_n$ $(ngeq 2)$ can be the energy of graphs. We show that $varphi_n$ cannot be the energy of graphs. Also we prove that all natural powers of $varphi_{2n}$ cannot be the energy of a matroid.

full text

Strength of strongest dominating sets in fuzzy graphs

A set S of vertices in a graph G=(V,E) is a dominating set ofG if every vertex of V-S is adjacent to some vertex of S.For an integer k≥1, a set S of vertices is a k-step dominating set if any vertex of $G$ is at distance k from somevertex of S. In this paper, using membership values of vertices and edges in fuzzy graphs, we introduce the concepts of strength of strongestdominating set as well a...

full text

Dominating sequences in graphs

A sequence of vertices in a graph G is called a legal dominating sequence if every vertex in the sequence dominates at least one vertex not dominated by those vertices that precede it, and at the end all vertices of G are dominated. While the length of a shortest such sequence is the domination number of G, in this paper we investigate legal dominating sequences of maximum length, which we call...

full text

Hereditary dominating pair graphs

An asteroidal triple (AT) is a set of vertices such that each pair of vertices is joined by a path that avoids the neighborhood of the third. Every AT-free graph contains a dominating pair, a pair of vertices such that for every path between them, every vertex of the graph is within distance one of the path. We say that a graph is a hereditary dominating pair (HDP) graph if each of its connecte...

full text

Dominating Pair Graphs

A pair of vertices of a graph is called a dominating pair if the vertex set of every path between these two vertices is a dominating set of the graph. A graph is a weak dominating pair graph if it has a dominating pair. Further, a graph is called a dominating pair graph if each of its connected induced subgraphs is a weak dominating pair graph. Dominating pair graphs form a class of graphs cont...

full text

Dominating cliques in graphs

A set of vertices is a dominating set in a graph if every vertex not in the dominating set is adjacent to one or more vertices in the dominating set. A dominating clique is a dominating set that induces a complete subgraph. Forbidden subgraph conditions sufficient to imply the existence of a dominating clique are given. For certain classes of graphs, a polynomial algorithm is given for finding ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 24

pages  85- 96

publication date 2020-05-21

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023