In silico structural analysis of quorum sensing genes in Vibrio fischeri

author

Abstract:

Quorum sensing controls the luminescence of Vibrio fischeri through the transcriptional activator LuxR and the specific autoinducer signal produced by luxI. Amino acid sequences of these two genes were analyzed using bioinformatics tools. LuxI consists of 193 amino acids and appears to contain five α-helices and six ß-sheets when analyzed by SSpro8. LuxI belongs to the autoinducer synthetase family and contains an acetyltransferase domain extending from residues 24 to 110 as MOTIF predicted.  LuxR, on the other hand, contains 250 amino acids and has ten α-helices and four ß-sheets. MOTIF predicted LuxR to possess functional motifs; the inducer binding site extending from amino acid residues 23 to 147 and the LuxR activator site extending between amino acids 182 and 236. The InterProScan5 server identified a winged helix-turn-helix DNA binding motif.

Download for Free

Sign up for free to access the full text

Already have an account?login

similar resources

in silico structural analysis of quorum sensing genes in vibrio fischeri

quorum sensing controls the luminescence of vibrio fischeri through the transcriptional activator luxr and the specific autoinducer signal produced by luxi. amino acid sequences of these two genes were analyzed using bioinformatics tools. luxi consists of 193 amino acids and appears to contain five α-helices and six ß-sheets when analyzed by sspro8. luxi belongs to the autoinducer synthetase fa...

full text

In silico structural analysis of quorum sensing genes inVibrio fischeri

Quorum sensing controls the luminescence of Vibrio fischeri through the transcriptional activator LuxR and the specific autoinducer signal produced by luxI. Amino acid sequences of these two genes were analyzed using bioinformatics tools. LuxI consists of 193 amino acids and appears to contain five α-helices and six ß-sheets when analyzed by SSpro8. LuxI belongs to the autoinducer synthetase fa...

full text

LuxU connects quorum sensing to biofilm formation in Vibrio fischeri.

Biofilm formation by Vibrio fischeri is a complex process involving multiple regulators, including the sensor kinase (SK) RscS and the response regulator (RR) SypG, which control the symbiosis polysaccharide (syp) locus. To identify other regulators of biofilm formation in V. fischeri, we screened a transposon library for mutants defective in wrinkled colony formation. We identified LuxQ as a p...

full text

Interplay of two quorum sensing regulation systems of Vibrio fischeri.

Many bacteria developed a possibility to recognise aspects of their environment or to communicate with each other by chemical signals. An important strategy is the so-called quorum sensing (QS), a regulatory mechanism for the gene expression, where the bacteria measure their own cell density by means of this signalling pathway. One of the best-studied species using QS is the marine luminescent ...

full text

Quorum regulation of luminescence in Vibrio fischeri.

Luminescence in Vibrio fischeri is controlled by a population density-responsive regulatory mechanism called quorum sensing. Elements of the mechanism include: LuxI, an acyl-homoserine lactone (acyl-HSL) synthase that directs synthesis of the diffusible signal molecule, 3-oxo-hexanoyl-HSL (V. fischeri autoinducer-1, VAI-1); LuxR, a transcriptional activator protein necessary for response to VAI...

full text

AinS quorum sensing regulates the Vibrio fischeri acetate switch.

The marine bacterium Vibrio fischeri uses two acyl-homoserine lactone (acyl-HSL) quorum-sensing systems. The earlier signal, octanoyl-HSL, produced by AinS, is required for normal colonization of the squid Euprymna scolopes and, in culture, is necessary for a normal growth yield. In examining the latter requirement, we found that during growth in a glycerol/tryptone-based medium, wild-type V. f...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 3

pages  115- 124

publication date 2015-09-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023