Impulsive integrodifferential Equations and Measure of noncompactness
Authors
Abstract:
This paper is concerned with the existence of mild solutions for impulsive integro-differential equations with nonlocal conditions. We apply the technique measure of noncompactness in the space of piecewise continuous functions and by using Darbo-Sadovskii's fixed point theorem, we prove reasults about impulsive integro-differential equations for convex-power condensing operators.
similar resources
Impulsive Integrodifferential Equations Involving Nonlocal Initial Conditions
We focus on a Cauchy problem for impulsive integrodifferential equations involving nonlocal initial conditions, where the linear part is a generator of a solution operator on a complex Banach space. A suitable mild solution for the Cauchy problem is introduced. The existence and uniqueness of mild solutions for the Cauchy problem, under various criterions, are proved. In the last part of the pa...
full textControl and optimal response problems for quasilinear impulsive integrodifferential equations
In various real-world applications, there is a necessity given to steer processes in time. More and more it becomes acknowledged in science and engineering, that these processes exhibit discontinuities. Our paper on theory of control (especially, optimal control) and on theory of dynamical systems gives a contribution to this natural or technical fact. One of the central results of our paper is...
full textControllability of Impulsive Fractional Evolution Integrodifferential Equations in Banach Spaces
According to fractional calculus theory and Banach’s fixed point theorem, we establish the sufficient conditions for the controllability of impulsive fractional evolution integrodifferential equations in Banach spaces. An example is provided to illustrate the theory.
full textExistence of Extremal Solutions for Impulsive Delay Fuzzy Integrodifferential Equations in $n$-dimensional Fuzzy Vector Space
In this paper, we study the existence of extremal solutions forimpulsive delay fuzzy integrodifferential equations in$n$-dimensional fuzzy vector space, by using monotone method. Weshow that obtained result is an extension of the result ofRodr'{i}guez-L'{o}pez cite{rod2} to impulsive delay fuzzyintegrodifferential equations in $n$-dimensional fuzzy vector space.
full textMy Resources
Journal title
volume 5 issue 2
pages 68- 84
publication date 2017-01-03
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023