Improving the combustion and emission characteristics of ISM 370 diesel engine by hydrogen addition and redesigning injection strategy

Authors

  • kianoosh shojae Faculty of Chemical, Petroleum, and Gas Engineering, Semnan University, Semnan, Iran
Abstract:

Hydrogen fuel is the cleanest fuel available. This fuel can be used as an additive in the diesel engine. Diesel engines have the advantages of strong power, high thermal efficiency and low fuel costs. There have been extensive studies on the use of hydrogen fuel in diesel engines in recent years. However, the simultaneous effect of using gaseous hydrogen fuel and changing injection strategy needs further investigation specially for the Cummins ISM370 engine. This work considers almost all functional and emission parameters, simultaneously. This procedure can be effective to achieve balanced conditions when 6% H2 (by volume) is injected into the Cummins ISM 370 diesel engine (under different engines). In addition, due to changing fuel compound used in engine, injection timing and temperature of engine should be redesigned to better operating. For simulation of engine, a CFD code was used. In order to validity and verify the simulation predicted mean pressure and the rate of heat release are compered to experimental data and results gave appropriate accordance. Results show that most of exhaust emissions such as NO, CO, etc. are dramatically reduced by using gaseous hydrogen under various engine speeds. It is determined that with addition of 6% H2 within the engine, indicated thermal efficiency is increased by around 39%; and NO, soot, CO and CO2 emissions are reduced by 5%, 75%, 70%, and 30%, respectively, under 1600 rpm speed. It is also found that the best injection timing that makes a balance between exhaust emissions and performance parameters is 4 deg BTDC under 2000 rpm. Moreover, the best injection temperature is 330 K among of three considered injection temperatures.3

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

The effect of hydrogen and nitrogen addition on heavy duty diesel engine emissions under reactivity controlled compression ignition combustion

The aim of this study is to evaluate a heavy duty diesel engine operation under reactivity controlled compression ignition combustion fueled with diesel oil and natural gas enriched with hydrogen and nitrogen addition. In this study, a single cylinder heavy– duty diesel engine is set to operate at 9.4bar gross IMEP (Mid- Load). The amount of injected diesel oil per cycle into the engine combust...

full text

Combustion Characteristics of a Diesel-hydrogen Dual Fuel Engine

Among the alternative fuels, hydrogen shows great potential in the near future. In the present study, hydrogen utilization as diesel engine fuel was investigated. Hydrogen can not be used directly in a diesel engine due to its autoignition temperature higher than that of diesel fuel. One alternative method is to use hydrogen in enrichment or induction. To investigate the combustion characterist...

full text

Effects of Ethanol-diesel Emulsions on the Performance, Combustion and Emission Characteristics of Di Diesel Engine

The main objective of this study is to analyze the different ratio of emulsified fuels on the performance, emission and combustion characteristics of four stroke single cylinder kirloskar TV-I direct injection compression ignition engine and compared with diesel fuel under different engine loads with constant engine speed of 1500 rpm. Four kinds of test fuels were prepared namely 80% diesel, 10...

full text

Prediction of Physical Delay Period RiDirect Injection Diesel Engine Combustion

A semi-empirical mathematical model for predicting the physical part of ignition delay period in the combustion of diesel engines with swirl is developed. This model is based on a single droplet evaporation model. The governing equations, namely, equations of droplet motion, heat and mass transfer were solved simultaneously using a Runge-Kutta step by step method. The computation was executed u...

full text

A Computational Study of the Effects of Combustion Chamber Geometries on Combustion Process and Emission in a DI Diesel Engine

A computational study aiming to investigate the effect of combustion chamber geometry on combustion process and emission has been carried out in a direct injection diesel engine. The combustion process and emission of three different combustion chamber geometries were considered, and combustion process behaviors such as variation of mean pressure, velocity, heat release rate, emission productio...

full text

Performance and Emission Characteristics of a Diesel Engine with Cottonseed Oil Plus Diesel Oil Blends

aIn the present study a 4-stroke 5hp diesel engine was tested with Diesel oil plus cottonseed oil blends. The blends in different proportions (10 to 50 percent by volume) were tested at constant speed of 1500 rpm. The said engine is operated at different loads and characteristics like Brake power, Brake thermal efficiency, specific fuel consumption etc. Engine performance for blends resulted in...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 2

pages  119- 129

publication date 2018-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023