Improving Power Density of Piezoelectric Vibration-Based Energy Scavengers

Authors

  • M Hamedi Department of Mechanical Engineering, Faculty of Engineering, University of Tehran, Iran
  • O Zargar School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
  • R Hosseini Young Researchers and Elite Club, South Tehran Branch, Islamic Azad University, Tehran, Iran
Abstract:

Vibration energy harvesting with piezoelectric materials currently generate up to 300 microwatts per cm2, using it to be mooted as an appropriate method of energy harvesting for powering low-power electronics. One of the important problems in bimorph piezoelectric energy harvesting is the generation of the highest power with the lowest weight. In this paper the effect of the shape and geometry of a bimorph piezoelectric cantilever beam harvester on the electromechanical efficiency of the system is studied. An analytic model has been presented using Rayleigh cantilever beam approximations for piezoelectric harvesters with tapered bimorph piezoelectric cantilever beam. In order to study the effect of a cantilever beam length and geometry on the generated voltage, finite element simulation has been performed using ABAQUS. Design optimization has been used to obtain the maximum output power and tapered beams are observed to lead to more uniform distribution of strain in the piezoelectric layer, thus increasing efficiency.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Temperature effects on output power of piezoelectric vibration energy harvesters

The performance of piezoelectric vibration energy harvesters was studied as a function of environment temperature. The devices fabricated by soft or hard PZTs were used to investigate the effect of material parameters on the thermal degradation of the devices. PZT MEMS device was also prepared and compared with the bulk devices to investigate scaling effect on the thermal degradation. All devic...

full text

Transduction Mechanisms and Power Density for MEMS Inertial Energy Scavengers

In this paper, the trends from the last 10 years of inertial micro-generator literature are investigated and it is shown that, although current generator designs are still operating well below their maximum power, there has been significant improvement with time. Whilst no clear conclusions could be drawn from reported fabricated devices with respect to preferred transducer technology, this pap...

full text

A Vibration-Based MEMS Piezoelectric Energy Harvester and Power Conditioning Circuit

This paper presents a micro-electro-mechanical system (MEMS) piezoelectric power generator array for vibration energy harvesting. A complete design flow of the vibration-based energy harvester using the finite element method (FEM) is proposed. The modal analysis is selected to calculate the resonant frequency of the harvester, and harmonic analysis is performed to investigate the influence of t...

full text

A broadband bistable piezoelectric cantilever-based vibration energy harvester with nonlinear high power extraction

This work presents a nonlinear vibration energy harvester, which combines a nonlinear bistable broadband piezoelectric cantilever used to transduce ambient vibration energy, with synchronized capture for efficient harvesting over broadband sources. An accurate model of the bistable transducer, that augments the Butterworth van Dyke piezoelectric model to capture the external magnetic force adde...

full text

Power processing circuits for electromagnetic, electrostatic and piezoelectric inertial energy scavengers

Inertial energy scavengers are self-contained devices which generate power from ambient motion, by electrically damping the internal motion of a suspended proof mass. There are significant challenges in converting the power generated from such devices to useable form, particularly in micro-engineered variants. This paper examines this power conversion requirement for each of the cases of electr...

full text

Piezoelectric Power Requirements for Active Vibration Control

This paper presents a method for predicting the power consumption of piezoelectric actuators utilized for active vibration control. Analytical developments and experimental tests show that the maximum power required to control a structure using surface-bonded piezoelectric actuators is independent of the dynamics between the piezoelectric actuator and the host structure. The results demonstrate...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 10  issue 1

pages  98- 109

publication date 2018-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023