Improving Phosphorus Efficiency in Crops with Focus on Purple Acid Phosphatase: Potentials and Perspective
Authors
Abstract:
Low-phosphorus (P) stress as a key factor limiting plant growth and production is common in most agricultural soils. Most of the soil-applied phosphate will be rapidly immobilized and most of annually applied phosphate fertilizers are fixed in the soil in organic forms by adsorption, sedimentation and transformation. However, excess P application may lead to contamination of water sources by enriching of water bodies with nutrients that cause eutrophication. Thus understanding the mechanisms that are used by plants to cope with low-P stress will be supportive to develop more competent breeding and genetic engineering schemes for generating improved phosphorus efficient crops. To cope with P deficiency and maintenance of phosphate homeostasis, plants have developed different adaptive mechanisms, including alterations in root morphology, recycling of inorganic phosphate (Pi) and induction of acid phosphatases (APases). To establish these strategies, numerous genes are involved in alternative metabolism pathways that are regulated by complex Pi signaling networks. In this review, we intend to summarize current advances in research on the mechanisms of P efficient crops and its breeding strategies, with a particular emphasis on APase and root architecture roles in response to low-P stress.
similar resources
Identification of soybean purple acid phosphatase genes and their expression responses to phosphorus availability and symbiosis.
BACKGROUND AND AIMS Purple acid phosphatases (PAPs) are members of the metallo-phosphoesterase family and have been known to play important roles in phosphorus (P) acquisition and recycling in plants. Low P availability is a major constraint to growth and production of soybean, Glycine max. Comparative studies on structure, transcription regulation and responses to phosphate (Pi) deprivation of...
full textFunctional Assessment of an Overexpressed Arabidopsis Purple Acid Phosphatase Gene (Atpap26) in Tobacco Plants
Background: Overexpression of known genes encoding key phosphate (Pi)-metabolizing enzymes, such as acid phosphatases (APases), is presumed to help plants with Pi availability and absorption as they are mostly exposed to suboptimal environmental conditions for this vital element.Objectives: In this study, the overexpression effect of AtPAP26, one of the m...
full textImproving phosphorus efficiency in cereal crops: Is breeding for reduced grain phosphorus concentration part of the solution?
Given the non-renewable nature of global phosphate reserves, there is a push to increase the phosphorus (P) efficiency of agricultural crops. Research has typically focussed on investigating P acquisition efficiency or internal P utilization efficiency to reduce crop fertilizer requirements. A novel option that would reduce the amount of P exported from fields at harvest, and may ultimately red...
full textInhibition of purple acid phosphatase with alpha-alkoxynaphthylmethylphosphonic acids.
Purple acid phosphatases (PAPs) are binuclear hydrolases that catalyse the hydrolysis of a range of phosphorylated substrates. Human PAP is a major histochemical marker for the diagnosis of osteoporosis. In patients suffering from this disorder, PAP activity contributes to increased bone resorption and, therefore, human PAP is a key target for the development of anti-osteoporotic drugs. This ma...
full textthe effect of oxytetracycline on serum calcium, phosphorus and magnesium in cattle
نتایج این مطالعه نشان می دهد که مقدار کلسیم (یونیزه و تام)، منیزیم و فسفر به طور معنی داری تغییر پیدا کرد به جزء مقدار کلسیم تام و منیزیم در روش داخل عضلانی که تغییر معنی داری نداشته است. بر اساس نتایج این مطالعه می توان نتیجه گیری کرد که اکسی تتراساکلین بر روی مقادیر سرمی کلسیم و منیزیم تأثیر می گذارد باید مقدار این کاتیون ها در بیماران، در هنگامی که اکسی تتراسایکلین استفاده می شود مورد توجه ق...
15 صفحه اولImproving the Nutrient Efficiency of Tree Crops
Introduction Essential mineral nutrients applied to crops are a cost to growers and, poorly managed, contaminate air and/or water resources. Over the past 30+ years, fertilizer costs (USDA, 2006) and evidence of the negative impact of fertilizer nutrient contamination of air and water resources have increased significantly (Tilman et al., 2002). Therefore, an increase in nutrient efficiency, me...
full textMy Resources
Journal title
volume 4 issue 1
pages 55- 69
publication date 2016-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023