Improving Accuracy of Recommender Systems using Social Network Information and Longitudinal Data
Authors
Abstract:
The rapid development of technology, the Internet, and the development of electronic commerce have led to the emergence of recommender systems. These systems will assist the users in finding and selecting their desired items. The accuracy of the advice in recommender systems is one of the main challenges of these systems. Regarding the fuzzy systems capabilities in determining the borders of user interests, it seems reasonable to combine it with social networks information and the factor of time. Hence, this study, for the first time, tries to assess the efficiency of the recommender systems by combining fuzzy logic, longitudinal data and social networks information such as tags, friendship, and membership in groups. And the impact of the proposed algorithm for improving the accuracy of recommender systems was studied by specifying the neighborhood and the border between the users’ preferences over time. The results revealed that using longitudinal data in social networks information in memory-based recommender systems improves the accuracy of these systems.
similar resources
Merging Similarity and Trust Based Social Networks to Enhance the Accuracy of Trust-Aware Recommender Systems
In recent years, collaborative filtering (CF) methods are important and widely accepted techniques are available for recommender systems. One of these techniques is user based that produces useful recommendations based on the similarity by the ratings of likeminded users. However, these systems suffer from several inherent shortcomings such as data sparsity and cold start problems. With the dev...
full textHybrid Recommender Systems using Social Network Analysis
This study proposes novel hybrid social network analysis and collaborative filtering approach to enhance the performance of recommender systems. The proposed model selects subgroups of users in Internet community through social network analysis (SNA), and then performs clustering analysis using the information about subgroups. Finally, it makes recommendations using cluster-indexing CF based on...
full textIncreasing the Accuracy of Recommender Systems Using the Combination of K-Means and Differential Evolution Algorithms
Recommender systems are the systems that try to make recommendations to each user based on performance, personal tastes, user behaviors, and the context that match their personal preferences and help them in the decision-making process. One of the most important subjects regarding these systems is to increase the system accuracy which means how much the recommendations are close to the user int...
full textmerging similarity and trust based social networks to enhance the accuracy of trust-aware recommender systems
in recent years, collaborative filtering (cf) methods are important and widely accepted techniques are available for recommender systems. one of these techniques is user based that produces useful recommendations based on the similarity by the ratings of likeminded users. however, these systems suffer from several inherent shortcomings such as data sparsity and cold start problems. with the dev...
full textUsing past-prediction accuracy in recommender systems
This paper presents a new approach for memory-based collaborative filtering algorithms. In general, user-based rating prediction is a process in which each neighbor suggests a rating for the target item and the suggestions are combined by weighting the contribution of each neighbor. We present a new alternative that is independent of user rating scales and is based on what we call predictive pr...
full textMy Resources
Journal title
volume 8 issue 3
pages 379- 389
publication date 2020-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023