Improvement of a Nano-scale Silicon on Insulator Field Effect Transistor Performance using Electrode, Doping and Buried Oxide Engineering
Authors
Abstract:
In this work, a novel Silicon on Insulator (SOI) MOSFET is proposed and investigated. The drain and source electrode structures are optimized to enhance ON-current while global device temperature and hot carrier injection are decreased. In addition, to create an effective heat passage from channel to outside of the device, a silicon region has embedded in the buried oxide. In order to reduce the device leakage current and controlling the threshold voltage, a p-type retrograde doping is introduced into channel region. Since the air has the least permittivity among materials, it can be utilized to decrease the device parasitic capacitances. Based on this, an air gap is embedded in the buried oxide near the silicon to improve RF performance of the device. Because the source and drain electrodes are embedded in and over the silicon film in the source and drain regions, we called this structure EEIOS-SOI MOSFET. “EEIOS” stands for “Embedded Electrodes In and Over the Silicon film”. During this work, EEIOS-SOI MOSFET is compared with a conventional SOI MOSFET and another SOI MOSFET with just Embedded Electrodes In the Silicon Film (EEIS-SOI). EEIS-SOI presents better electrical figure of merits including lower subthreshold slope and lower leakage current in simulations. An immense investigation among these devices shows that EEIOS-SOI MOSFET has better transconductance, lower gate injection leakage current and lower temperature related to DC parameters and higher cut off frequency, gain bandwidth product and unilateral power gain related to AC figures of merits compared to its counterparts.
similar resources
Optimum Design for Eliminating Back Gate Bias Effect of Silicon-on- insulator Lateral Double Diffused Metal-oxide-semiconductor Field Effect Transistor with Low Doping Buried Layer
An optimum design with silicon-on-insulator (SOI) device structure was proposed to eliminate back gate bias effect of the lateral double diffused metal-oxide-semiconductor field effect transistor (LDMOSFET) and to improve breakdown voltage. The SOI structure was characterized by low doping buried layer (LDBL) inserted between the silicon layer and the buried oxide layer. The LDBL thickness is a...
full textA Novel Body-tied Silicon-On-Insulator(SOI) n-channel Metal-Oxide-Semiconductor Field-Effect Transistor with Grounded Body Electrode
full text
Nanophotonic devices on thin buried oxide Silicon-On-Insulator substrates.
We demonstrate a silicon photonic platform using thin buried oxide silicon-on-insulator (SOI) substrates using localized substrate removal. We show high confinement silicon strip waveguides, micro-ring resonators and nanotapers using this technology. Propagation losses for the waveguides using the cutback method are 3.88 dB/cm for the quasi-TE mode and 5.06 dB/cm for the quasi-TM mode. Ring res...
full textA highly pH-sensitive nanowire field-effect transistor based on silicon on insulator
BACKGROUND An experimental and theoretical study of a silicon-nanowire field-effect transistor made of silicon on insulator by CMOS-compatible methods is presented. RESULTS A maximum Nernstian sensitivity to pH change of 59 mV/pH was obtained experimentally. The maximum charge sensitivity of the sensor was estimated to be on the order of a thousandth of the electron charge in subthreshold mod...
full textthe effect of a selfregulatory approach on the improvement of efl learners listening comprehension
تاثیر آموزش مهارت خود محوری بر روی ارتقاء مهارت شنیداری زبان آموزان هدف این پژوهش بررسی عوامل موثر در ارتقا مهارت شنیداری زبان آموزان ایرانی بود. در مرحله اول این تحقیق پژوهشگر پس از انجام مصاحبه نود زبان آموز را با استفاده از تست ایلتس انتخاب شدند. برای بررسی عوامل عوامل موثر در ارتقا مهارت شنیداری زبان آموزان ایرانی از دو نوع فیلم ویرایش شده و ویرایش نشده استفاده گردید.برای انجام تح...
My Resources
Journal title
volume 10 issue 2
pages 317- 326
publication date 2020-04-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023