Impact of reconstruction method on quantitative parameters of 99mTc-TRODAT-1 SPECT
Authors
Abstract:
Introduction: Quantitative evaluation is recommended to improve diagnostic ability and serial assessment of dopamine transporter (DAT) density scans. We decided to compare the ordered subsets expectation-maximization (OSEM) with filtered back-projection (FBP), and to investigate the impact of different iteration and cut-off frequencies on SBR values. Methods: We retrospectively examined 27 consecutive patients. SPECT reconstruction was performed using OSEM and FBP with Chang’s attenuation correction (AC). Iterative reconstruction parameters were used with different iterations ranging from 2, 4, 6, 8, and 10 with fixed 10 subsets and different subsets including 5, 10 and 15 with fixed 6 iterations. Reconstruction with FBP were performed with different critical cut-off frequencies of 0.3, 0.4 and 0.5. Results: Comparing SBR derived by OSEM reconstruction with 10 subsets but different iterations revealed statistically significant intraclass correlation (ICC) in both right and left side. There is also no significant difference between different OSEM reconstruction with different subsets and ICC was excellent in all patients. ICC for FBP reconstruction with different cut-off frequency revealed good ICC in all patients. However, lower degree of SBR showed higher decrease in ICC with insignificant and poor correlation in patients with SBR Conclusion: Our study showed that change in FBP reconstruction parameters can greatly impact the SBR value of 99mTc-TRODAT-1, especially in patients with more severe disease. However, OSEM reconstruction revealed better reproducibility for SBR using different iterations.
similar resources
Optimization of Imaging Parameters for SPECT scans of [99mTc]TRODAT-1 Using Taguchi Analysis
Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive loss of dopaminergic neurons in the basal ganglia. Single photon emission computed tomography (SPECT) scans using [99mTc]TRODAT-1 can image dopamine transporters and provide valuable diagnostic information of PD. In this study, we optimized the scanning parameters for [99mTc]TRODAT-1/SPECT using the Taguchi ana...
full textEvaluation of the potential impact of reconstruction method on dyssynchrony parameters derived by phase analysis of gated-SPECT MPI: Comparison of two quantitative software
Introduction: Gated SPECT myocardial perfusion scanning has new capabilities in addition to its main applications such as left ventricular dyssynchrony using phase analysis. Phase analysis has been investigated through various software including Emory Cardiac Toolbox (ECTb) and Quantitative Gated SPECT (QGS). The aim of this study is to evaluate the effect of reconstruction par...
full textDiagnostic accuracy of [99mTc]TRODAT-1 SPECT imaging in early Parkinson's disease.
We evaluated the diagnostic accuracy of SPECT imaging using [(99m)Tc]TRODAT-1 (TRODAT), a relatively inexpensive technetium-labeled dopamine transporter ligand, in distinguishing 29 patients with early PD from 38 healthy volunteers. Mean TRODAT uptake values were significantly decreased in the caudate (p=0.0097) and anterior and posterior putamen (p < 0.0001) of PD patients compared to controls...
full textEffects of 99mTc-TRODAT-1 drug template on image quantitative analysis
99mTc-TRODAT-1 is a type of drug that can bind to dopamine transporters in living organisms and is often used in SPCT imaging for observation of changes in the activity uptake of dopamine in the striatum. Therefore, it is currently widely used in studies on clinical diagnosis of Parkinson's disease (PD) and movement-related disorders. In conventional 99mTc-TRODAT-1 SPECT image evaluation, visua...
full text99mTc-TRODAT-1 SPECT Imaging in Early and Late Onset Parkinson’s Disease
Objective(s): 99mTc-TRODAT-1, which binds to the dopamine transporter, could be used to image the dopaminergic system in diagnosis of Parkinson’s disease (PD). PD can be classified into two groups: late onset Parkinson’s disease (LOPD) and early onset Parkinson’s disease (EOPD). In this study we tried to determine the TRODAT SPECT findings in EOPD as compared to LOPD.Methods: Fifteen patients w...
full text99mTc-TRODAT-1 SPECT Imaging in Early and Late Onset Parkinson’s Disease
OBJECTIVES 99mTc-TRODAT-1, which binds to the dopamine transporter, could be used to image the dopaminergic system in diagnosis of Parkinson's disease (PD). PD can be classified into two groups: late onset Parkinson's disease (LOPD) and early onset Parkinson's disease (EOPD). In this study we tried to determine the TRODAT SPECT findings in EOPD as compared to LOPD. METHODS Fifteen patients we...
full textMy Resources
Journal title
volume 28 issue 2
pages 4- 11
publication date 2020-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023