Hyperbolic Cosine Log-Logistic Distribution and Estimation of Its Parameters by Using Maximum Likelihood Bayesian and Bootstrap Methods

author

Abstract:

‎In this paper‎, ‎a new probability distribution‎, ‎based on the family of hyperbolic cosine distributions is proposed and its various statistical and reliability characteristics are investigated‎. ‎The new category of HCF distributions is obtained by combining a baseline F distribution with the hyperbolic cosine function‎. ‎Based on the base log-logistics distribution‎, ‎we introduce a new distribution so-called HCLL and derive the various properties of the proposed distribution including the moments‎, ‎quantiles‎, ‎moment generating function‎, ‎failure rate function‎, ‎mean residual lifetime‎, ‎order statistics and stress-strength parameter‎. ‎Estimation of the parameters of HCLL for a real data set is investigated by using three methods‎: ‎maximum likelihood‎, ‎Bayesian and bootstrap (parametric and non-parametric)‎. ‎We evaluate the efficiency of the maximum likelihood estimation method by Monte Carlo simulation‎. ‎In addition‎, ‎in the application section‎, ‎by using a realistic data set‎, ‎the superiority of HCLL model to generalized exponential‎, ‎Weibull‎, ‎hyperbolic cosine exponential‎, ‎gamma‎, ‎weighted exponential distributions is shown through the different criteria of selection model‎.                                

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Bayesian and Iterative Maximum Likelihood Estimation of the Coefficients in Logistic Regression Analysis with Linked Data

This paper considers logistic regression analysis with linked data. It is shown that, in logistic regression analysis with linked data, a finite mixture of Bernoulli distributions can be used for modeling the response variables. We proposed an iterative maximum likelihood estimator for the regression coefficients that takes the matching probabilities into account. Next, the Bayesian counterpart...

full text

Markov Logarithmic Series Distribution and Estimation of its Parameters by Method of E-Bayesian

In the analysis of Bernoulli's variables, an investigation of the their dependence is of the prime importance. In this paper, the distribution of the Markov logarithmic series is introduced by the execution of the first-order dependence among Bernoulli variables. In order to estimate the parameters of this distribution, maximum likelihood, moment, Bayesian and also a new method which called the...

full text

comparative dna interaction studies of antiviral drug, zidovudine and its complex using different instrumental methods

هدف از این مطالعه بررسی امکان استفاده از داروهای شناخته شده در درمان سایر بیماریها به عنوان داروهای ضد سرطان است. همچنین با استفاده از این داروها در ساختمان کمپلکس فلز می توان شاخص های دارویی بدست آمده را بررسی نمود. داروی ضد ویروس ایدز(hiv)به نام زیدوودین(azt)انتخاب و.کمپلکس.محلول.در.آب[pt(azt)2]cl2سنتزو به روشهای مختلف فیزیکی و شیمیایی شناسایی گردید. بر هم کنش مقایسه ای این دارو و کمپلکس پلا...

15 صفحه اول

Maximum Likelihood Estimation of Dirichlet Distribution Parameters

The Dirichlet distribution is one that has often been turned to in Bayesian statistical inference as a convenient prior distribution to place over proportional data. To properly motivate its study, we will begin with a simple coin toss example, where the task will be to find a suitable distribution P which summarizes our beliefs about the probability that the toss will result in heads, based on...

full text

LAMARC 2.0: maximum likelihood and Bayesian estimation of population parameters

UNLABELLED We present a Markov chain Monte Carlo coalescent genealogy sampler, LAMARC 2.0, which estimates population genetic parameters from genetic data. LAMARC can co-estimate subpopulation Theta = 4N(e)mu, immigration rates, subpopulation exponential growth rates and overall recombination rate, or a user-specified subset of these parameters. It can perform either maximum-likelihood or Bayes...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 22  issue 2

pages  111- 123

publication date 2018-03

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023