Human term placental cells: phenotype, properties and new avenues in regenerative medicine

Authors

  • Maddalena Caruso Centro di Ricerca E. Menni, Fondazione Poliambulanza, Istituto Ospedaliero, Via Bissolati 57, 25124 Brescia, Italy.
  • Marco Evangelista Centro di Ricerca E. Menni, Fondazione Poliambulanza, Istituto Ospedaliero, Via Bissolati 57, 25124 Brescia, Italy.
  • Ornella Parolini Centro di Ricerca E. Menni, Fondazione Poliambulanza, Istituto Ospedaliero, Via Bissolati 57, 25124 Brescia, Italy.
Abstract:

The human placenta has long been the subject of scientific interest due to the important roles which it performs during pregnancy in sustaining the fetus and maintaining fetomaternal tolerance. More recently, however, researchers have begun to investigate the possibility that the placenta’s utility may extend beyond fetal development to act as a source of cells with clinically relevant properties. Indeed, several groups have reported the isolation of cells from different placental regions which display both multilineage differentiation potential and immunomodulatory properties in vitro. Furthermore, these cells have also been shown to secrete soluble factors involved in pathophysiological processes that may aid tissue repair. Cells with such features will clearly find application in the field of regenerative medicine for the repair/regeneration of damaged or diseased tissues or organs. In line with these promising findings, several preclinical and clinical studies conducted to date argue in strong favor of the therapeutic utility of placenta-derived cells for the treatment of several diseases. Although much work remains to be conducted in order to fully understand the properties of placental cells and the mechanisms which underlie their beneficial effects in vivo, data reported to date nonetheless provide compelling evidence in support of the placenta as a cell source for use in regenerative medicine.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

human term placental cells: phenotype, properties and new avenues in regenerative medicine

the human placenta has long been the subject of scientific interest due to the important roles which it performs during pregnancy in sustaining the fetus and maintaining fetomaternal tolerance. more recently, however, researchers have begun to investigate the possibility that the placenta’s utility may extend beyond fetal development to act as a source of cells with clinically relevant properti...

full text

Human Term Placental Cells: Phenotype, Properties and New Avenues in Regenerative Medicine

The human placenta has long been the subject of scientific interest due to the important roles which it performs during pregnancy in sustaining the fetus and maintaining fetomaternal tolerance. More recently, however, researchers have begun to investigate the possibility that the placenta's utility may extend beyond fetal development to act as a source of cells with clinically relevant properti...

full text

Spermatogonia stem cells: A new pluripotent source for repairment in regenerative medicine

Recently new reports have proved the pluripotency of spermatogonial stem cells (SSCs) derived from male gonad. This pluripotent stem cells resembled Embryonic stem cells recognized as Embryonic Stem like cells (ES like cells). ES like cells forms sharp edge colonies that are immunopositive to pluripotency markers and have differentiation capacity to Ectodermal, Mesodermal and Endodermal layers....

full text

Mesencchymal Stem Cells: Sources and Properties in Regenerative Medicine

Stem cells application in regenerative medicine is the new goal on stem cell research. However, still exist some problems to use stem cells safely mainly by immune rejection and by cancer development issues. One type of stem cells, the mesenchymal stem cells are promising therapeutic cells that shown unique immunomodulatory properties. On the other hand, some issues regarding MSCs participation...

full text

Biological characteristics of Stem Cells from Human Exfoliated Deciduous Teeth (SHEDs) and its therapeutic applications in regenerative medicine

Stem cells isolated from human exfoliated deciduous teeth (SHEDs) are multipotent mesenchymal stem cells that are isolated from dental pulp tissues. These cells have a high proliferative capacity, multipotential ability, immunomodulatory function, and minimal risk of oncogenesis. Recent studies have shown that SHEDs are a feasible cell source for cell therapy and regenerative medicine.

full text

Human Pluripotent Stem Cells in Cardiovascular Research and Regenerative Medicine

Heart disease is one of the leading causes of mortality worldwide. Because adult cardiomyocytes (CMs) lack the ability to regenerate, malfunctions or significant loss of CMs due to disease or aging can lead to cardiac arrhythmias, heart failure, and subsequently death. Heart transplantation for patients with end stage heat failure is limited by the number of donor organs available. Cell-based t...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 1  issue None

pages  64- 74

publication date 2012-10

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023