Highly efficient synthesis of tetrahydrobenzo[b]pyrans under visible light promoted by cesium carbonate

Authors

  • Bushra Saleh Organic Chemistry Research Laboratory, School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Vishnupuri, Nanded- 431606, India
  • Munazza Sadaf Organic Chemistry Research Laboratory, Department of Chemistry, Institute of Science, Nagpur-440001, India
  • Vinod Kamble Organic Chemistry Research Laboratory, Department of Chemistry, Institute of Science, Nagpur-440001, India
Abstract:

Multi-component coupling reaction (MCR) is a powerful synthetic tool for the synthesis of biologically active compounds. Development of such multi-component coupling reaction strategies in visible light has been of considerable interest, as they provide simple and rapid access to a large number of organic molecules through a sustainable path. An efficient and green protocol for the synthesis of tetrahydrobenzo[b]pyrans derivatives by one-pot, three component coupling reaction of aromatic aldehyde, malononitrile, and dimedone has been developed using readily available cesium carbonate as the catalyst under visible light. This efficient procedure has the advantages of giving the target compounds in high yields, short reaction times, simple work-up procedure, use of chief and easily available catalyst, and environmentally benign conditions.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Highly efficient nitrobenzene photoreduction over the amino acid-modified CdS-TiO2 nanostructures under visible light

CdS-coupled TiO2 nanocrystals were prepared by the microemulsion-mediated solvothermal method at pretty low temperatures. The semiconductor nanocrystals were modified with tyrosine, phenyl alanine, glysine and glutamate aminoacids and then were characterized by BET, SEM, EDX, XRD, UV–Vis spectroscopy, and FTIR analysis methods. The specific surface area and the average pore diameter ...

full text

Upgrading TiO2 Photoactivity under Visible Light by Synthesis of MWCNT/TiO2 Nanocomposite

Nanocomposites of multi-walled carbon nanotubes and titanium dioxide (MWCNT/TiO2) were synthesized by the sol-gel method. Regarding hydrophobicity of carbon nanotubes (CNTs), benzyl alcohol was used as the linking agent between CNT powder and TiO2 gel which was prepared from the precursor of titanium tetraisopropoxide. The prepared samples were treated under thermal treatments. A part of the sa...

full text

Facile Synthesis of Nickel Chromite Nanostructures by Hydrothermal Route for Photocatalytic Degradation of Acid Black 1 under Visible Light

NiCr2O4 normal spinel nanostructures were prepared via hydrothermal treatment at 180 °C for 12 h in the presence of cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulphate (SDS) and poly vinylpyrrolidone-25000 (PVP-25000) as capping agents and subsequent calcination process at 500 °C for 3 h . In this method, [Ni(en)2(H2O)...

full text

Synthesis of nanocomposite based on Semnan natural zeolite for photocatalytic degradation of tetracycline under visible light

This study investigated the photocatalytic behaviors for the nanocomposite of TiO2 P25 and Semnan natural zeolite in the decomposition of tetracycline under visible light in an aqueous solution. The structural features of the composite were investigated by a series of complementary techniques that included X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), scanning elec...

full text

Caesium carbonate as a highly efficient catalyst for the synthesis of macrocyclic diamides

In this research work, we report the synthesis of macrocyclic diamides from the reaction of diesters and aliphatic diamines in the presence of caesium carbonate. It has been demonstrated that among the carbonate of alkali metals (Li2CO3, Na2CO3, K2CO3 and CS2CO3), CS2CO3 appear to be the best catalyst for macrocyclization. Diesters with different substitution patterns on the aromatic ring react...

full text

Highly efficient photocatalytic hydrogen evolution of graphene/YInO3 nanocomposites under visible light irradiation.

Visible-light-driven hydrogen evolution with high efficiency is important in the current photocatalysis research. Here we report for the first time the design and synthesis of a new graphene-semiconductor nanocomposite consisting of YInO3 nanoparticles and two-dimensional graphene sheets as efficient photocatalysts for hydrogen evolution under visible light irradiation. The graphene/YInO3 nanoc...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue Issue 2, pp. 121-236

pages  167- 172

publication date 2017-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023