Higher Derivations Associated with the Cauchy-Jensen Type Mapping
author
Abstract:
Let H be an infinite--dimensional Hilbert space and K(H) be the set of all compact operators on H. We will adopt spectral theorem for compact self-adjoint operators, to investigate of higher derivation and higher Jordan derivation on K(H) associated with the following cauchy-Jencen type functional equation 2f(frac{T+S}{2}+R)=f(T)+f(S)+2f(R) for all T,S,Rin K(H).
similar resources
higher derivations associated with the cauchy-jensen type mapping
let h be an infinite--dimensional hilbert space and k(h) be the set of all compact operators on h. we will adopt spectral theorem for compact self-adjoint operators, to investigate of higher derivation and higher jordan derivation on k(h) associated with the following cauchy-jencen type functional equation 2f(frac{t+s}{2}+r)=f(t)+f(s)+2f(r) for all t,s,rin k(h).
full textCauchy-Rassias Stability of linear Mappings in Banach Modules Associated with a Generalized Jensen Type Mapping
full text
cauchy-rassias stability of linear mappings in banach modules associated with a generalized jensen type mapping
full text
Non-Archimedean stability of Cauchy-Jensen Type functional equation
In this paper we investigate the generalized Hyers-Ulamstability of the following Cauchy-Jensen type functional equation$$QBig(frac{x+y}{2}+zBig)+QBig(frac{x+z}{2}+yBig)+QBig(frac{z+y}{2}+xBig)=2[Q(x)+Q(y)+Q(z)]$$ in non-Archimedean spaces
full textCauchy–rassias Stability of Homomorphisms Associated to a Pexiderized Cauchy–jensen Type Functional Equation
We use a fixed point method to prove the Cauchy–Rassias stability of homomorphisms associated to the Pexiderized Cauchy–Jensen type functional equation r f ( x+ y r ) + sg ( x− y s ) = 2h(x), r,s ∈ R\{0}
full textMy Resources
Journal title
volume 11 issue 1
pages 57- 68
publication date 2017-03-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023