Hardness Optimization for Al6061-MWCNT Nanocomposite Prepared by Mechanical Alloying Using Artificial Neural Networks and Genetic Algorithm

Authors

  • Gholam Khayati Department of Materials Science and Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.
  • Mehrdad Mahdavi Jafari Department of Materials Science and Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.
  • Soheil Soroushian Department of Materials Science and Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.
Abstract:

Among artificial intelligence approaches, artificial neural networks (ANNs) and genetic algorithm (GA) are widely applied for modification of materials property in engineering science in large scale modeling. In this work artificial neural network (ANN) and genetic algorithm (GA) were applied to find the optimal conditions for achieving the maximum hardness of Al6061 reinforced by multiwall carbon nanotubes (MWCNTs) through modeling of nanocomposite characteristics. After examination the different ANN architectures an optimal structure of the model, i.e. 6-18-1, is obtained with 1.52% mean absolute error and R2 = 0.987. The proposed structure was used as fitting function for genetic algorithm. The results of GA simulation predicted that the combination sintering temperature 346 °C, sintering time 0.33 h, compact pressure 284.82 MPa, milling time 19.66 h and vial speed 310.5 rpm give the optimum hardness, (i.e., 87.5 micro Vickers) in the composite with 0.53 wt% CNT. Also, sensitivity analysis shows that the sintering time, milling time, compact pressure, vial speed and amount of MWCNT are the significant parameter and sintering time is the most important parameter. Comparison of the predicted values with the experimental data revealed that the GA–ANN model is a powerful method to find the optimal conditions for preparing of Al6061-MWCNT.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Optimization of micro hardness of nanostructure Cu-Cr-Zr alloys prepared by the mechanical alloying using artificial neural networks and genetic algorithm

Cu–Cr-Zr alloys had wide applications in engineering applications such as electrical and welding industrial especially for their high strength, high electrical as well as acceptable thermal conductivities and melting points. It was possible to prepare the nano-structure of these age hardenable alloys using mechanical alloying method as a cheap and mass production technique to prepare the non-eq...

full text

Artificial Neural Network Based Prediction Hardness of Al2024-Multiwall Carbon Nanotube Composite Prepared by Mechanical Alloying

In this study, artificial neural network was used to predict the microhardness of Al2024-multiwall carbon nanotube(MWCNT) composite prepared by mechanical alloying. Accordingly, the operational condition, i.e., the amount of reinforcement, ball to powder weight ratio, compaction pressure, milling time, time and temperature of sintering as well as vial speed were selected as independent input an...

full text

Hybrid Modeling and Optimization of Hardness of Surface Produced by Electric Discharge Machining Using Artificial Neural Networks and Genetic Algorithm

The present work is aimed at optimizing the hardness of surface produced in die sinking electric discharge machining (EDM) by considering the simultaneous affect of various input parameters. The experiments are carried out on Ti6Al4V, HE15, 15CDV6 and M-250 by varying the peak current and voltage and the corresponding values of hardness were measured. Multiperceptron neural network models were ...

full text

Optimizing Multiple Response Problem Using Artificial Neural Networks and Genetic Algorithm

  This paper proposes a new intelligent approach for solving multi-response statistical optimization problems. In most real world optimization problems, we are encountered adjusting process variables to achieve optimal levels of output variables (response variables). Usual optimization methods often begin with estimating the relation function between the response variable and the control variab...

full text

Optimization of Plastic Injection Molding Process by Combination of Artificial Neural Network and Genetic Algorithm

Injection molding is one of the most important and common plastic formation methods. Combination of modeling tools and optimization algorithms can be used in order to determine optimum process conditions for the injection molding of a special part. Because of the complication of the injection molding process and multiplicity of parameters and their interactive effects on one another, analytical...

full text

Modeling and Optimization of Roll-bonding Parameters for Bond Strength of Ti/Cu/Ti Clad Composites by Artificial Neural Networks and Genetic Algorithm

This paper deals with modeling and optimization of the roll-bonding process of Ti/Cu/Ti composite for determination of the best roll-bonding parameters leading to the maximum Ti/Cu bond strength by combination of neural network and genetic algorithm. An artificial neural network (ANN) program has been proposed to determine the effect of practical parameters, i.e., rolling temperature, reduction...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 50  issue 1

pages  23- 32

publication date 2017-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023