Green synthesis of magnetic copper ferrite nanoparticles using tragacanth gum as a biotemplate and their catalytic activity for the oxidation of alcohols

Authors

  • Ali Ramazani Department of Chemistry, University of Zanjan, P O Box 45195-313, Zanjan, Iran.
  • Fariba Sadri Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran.
  • Sang Woo Joo School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea.
  • Zahra Hosseinzadeh Department of Chemistry, University of Zanjan, P O Box 45195-313, Zanjan, Iran.
Abstract:

During this study, we report the green synthesis of  magnetic copper ferrite nanoparticles using tragacanth gum as a reducing and stabilizing agent by the sol-gel method. The green synthesized CuFe2O4 MNPs are characterized by powder X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), vibrating sample magnetometer (VSM) and scanning electron microscopy (SEM). The X-ray powder diffraction (XRD) analysis revealed the formation of Cubic phase ferrite MNPs with average crystallite size of 14 nm. This study has demonstrated that CuFe2O4 nanoparticles can act as an efficient catalyst for selective oxidations of alcohols applying oxone (potassium hydrogen monopersulfate) as oxidant in the presence of acetonitrile as solvent at 40 ºC. Primary and secondary alcohols gave the corresponding products in good yields. Furthermore, the catalyst can be simply recovered and reused several times with almost no loss in activity.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application

BACKGROUND Copper oxide (CuO) nanoparticles have attracted huge attention due to catalytic, electric, optical, photonic, textile, nanofluid, and antibacterial activity depending on the size, shape, and neighboring medium. In the present paper, we synthesized CuO nanoparticles using gum karaya, a natural nontoxic hydrocolloid, by green technology and explored its potential antibacterial applicat...

full text

Green Synthesis and Characterization of Ni-Cu-Mg Ferrite Nanoparticles in the Presence of Tragacanth Gum and Study of Their Catalytic Activity in the Synthesis of Hexanitrohexaazaisowurtzitane

Here, we report the synthesis, characterization, and catalytic evaluation of Ni-Cu-Mg ferrite using tragacanth gum as biotemplate and Metals nitrate as the metal source by the sol-gel method without using any organic chemicals. The sample was characterized by powder X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Vibrating Sample Magnetometer (VSM), and Scanning El...

full text

comparison of catalytic activity of heteropoly compounds in the synthesis of bis(indolyl)alkanes.

heteropoly acids (hpa) and their salts have advantages as catalysts which make them both economically and environmentally attractive, strong br?nsted acidity, exhibiting fast reversible multi-electron redox transformations under rather mild conditions, very high solubility in polar solvents, fairly high thermal stability in the solid states, and efficient oxidizing ability, so that they are imp...

15 صفحه اول

synthesis of amido alkylnaphthols using nano-magnetic particles and surfactants

we used dbsa and nano-magnetic for the synthesis of amido alkylnaphtols.

15 صفحه اول

extraction and characterization of allium irancum plant extract and its application in the green synthesis of silver nano particles and oxidation of thiocarbony1 compounds

سنتز سبز نانوذرات فلزی (nps) درسالهای اخیر توجه بسیارزیادی را به خود جلب کرده است. زیرا این پروتوکل کم هزینه وسازگار با محیط زیست از روش های استاندارد سنتز. در این پایان نامه ما گزارش میکنیم یک روش ساده و سازگار با محیط زیست برای سنتز نانوذرات نقره با استفاده از محلول آبی عصاره گیاه allium iranicum به عنوان یک عامل کاهش دهنده ی طبیعی. نانو ذرات نقره مشخص شد با استفاده از تکنیک های uv-visible، x...

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 3

pages  181- 185

publication date 2017-09-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023