Green synthesis and morphology dependent antibacterial activity of copper oxide nanoparticles

Authors

  • Mahshid Kharaziha Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
  • shima Tavakoli Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
  • Shokouh Ahmadi Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
Abstract:

Cupper oxide nanoparticle (CuO-NPs) has been widely utilized in biomedical application due to their antibacterial function. It is well known that antibacterial characteristics of ma-terials could be controlled using the size, shape and composition of the particles. The aim of this paper is to green synthesis CuO-NPs with various morphologies, using Aloe Vera extract as reducing agent and investigate the effect of particle size and shape on the anti-bacterial properties. Results demonstrated the formation of pure CuO-NPs with crystallite size in range of 9-23 nm, depending on the precursor type and concentration as well as aging time. Furthermore, increasing the concentration of copper precursor from 6 mM to 1M altered the morphology from rod shape to spherical. We also examined the inhibitory effects of CuO-NPs toward the gram-negative bacterium, Escherichia coli and a gram-positive bacterium, Staphylococcus aureus cultures throughout a 24 hr period. Based on our data, while CuO-NPs had significant growth inhabitation, this property depended on the morphology and size of particles. Rod shape CuO-NPs with smooth surface were the most effective morphology due to the largest surface area contacting and highest reactivity in contact with bacteria. Results also demonstrated that St aureus was more resistant to CuO-NPs samples because it was a Gram positive bacteria and Gram-negative ones like E. coli were more susceptible, while all particles were toxic to both organisms. Together, these results suggest that the difference between the surface free energy may be a cause for their morphology-dependent antimicrobial activity.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Green synthesis and antibacterial activity of zinc selenide (ZnSe) nanoparticles

Objective(s): Drug delivery is an engineering technology to control the release and delivery of therapeutic agents to target organs, tissues, and cells. Metallic nanoparticles, such as gold nanoparticles (AuNPs) have exceptional properties which enable efficient drug transport into different cell types with reduced side effects and cytotoxicity to other tissues.Materials and Methods: AuNP...

full text

Black Tea Extract Mediated Green Synthesis of Copper Oxide Nanoparticles

Copper oxide nanoparticles were synthesized using black tea extract and copper nitrate as thecopper source by the green method at different calcination temperatures. This method has manyadvantages such as nontoxic, economic viability, ease to scale up, less time consuming andenvironmental friendly approach for the synthesis of CuO nanoparticles without using any organicchemicals. The synthesize...

full text

Nanoparticles of copper and copper oxides: Synthesis and Determination of antibacterial activity

Abstract In the present study, nanoparticles of copper and copper oxides were synthesized and their antibacterial activity was evaluated and compared with silver nanoparticles. The nanoparticles were synthesized using facile chemical reactions, and then characterized using field emission scanning microscopy. The nanoparticles were stable for at least two weeks. The...

full text

Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application

BACKGROUND Copper oxide (CuO) nanoparticles have attracted huge attention due to catalytic, electric, optical, photonic, textile, nanofluid, and antibacterial activity depending on the size, shape, and neighboring medium. In the present paper, we synthesized CuO nanoparticles using gum karaya, a natural nontoxic hydrocolloid, by green technology and explored its potential antibacterial applicat...

full text

Green synthesis of zinc oxide nanoparticles using Seaweed aqueous extract and evaluation of antibacterial and ecotoxicological activity

Abstract Green synthesized nanomaterials have garnered much attention due to their economic and ecofriendly benefits over common chemical methods of synthesis. In the present study, zinc oxide nanoparticles with an average diameter of 16.51 nm were successfully biosynthesized using the aqueous extract of the red seaweed Hypnea musciformis. The morphology, purity and quality of biosynthesiz...

full text

Green synthesis of silver oxide nanoparticles and its antibacterial activity against dental pathogens

In the present study, the use of silver oxide nanoparticles (Ag2O NPs) synthesized using Ficus benghalensis prop root extract (FBPRE) as a reducing and stabilizing agent is reported and evaluated for its antibacterial activity against dental bacterial strains. The effects of pH, extract concentration, metal ion concentration, and contact time were studied to confirm the optimum production of Ag...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 9  issue 1

pages  163- 171

publication date 2019-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023