Global attractor for a nonlocal hyperbolic problem on ${mathcal{R}}^{N}$

Authors

  • N.L. Matiadou Department of Electronics Engineering, School of Technological Applications, Piraeus University of Applied Sciences (Technological Education Institute of Piraeus), GR 11244, Egaleo, Athens, Greece
  • Perikles Papadopoulos Department of Electronics Engineering, School of Technological Applications, Piraeus University of Applied Sciences (Technological Education Institute of Piraeus), GR 11244, Egaleo, Athens, Greece
Abstract:

We consider the quasilinear Kirchhoff's problem$$ u_{tt}-phi (x)||nabla u(t)||^{2}Delta u+f(u)=0 ,;; x in {mathcal{R}}^{N}, ;; t geq 0,$$with the initial conditions  $ u(x,0) = u_0 (x)$  and $u_t(x,0) = u_1 (x)$, in the case where $N geq 3, ;  f(u)=|u|^{a}u$ and $(phi (x))^{-1} in L^{N/2}({mathcal{R}}^{N})cap L^{infty}({mathcal{R}}^{N} )$ is a positive function. The purpose of our work is to study the long time behaviour of the solution of this equation. Here, we prove the existence of a global attractor for this equation in the strong topology of the space ${cal X}_{1}=:{cal D}^{1,2}({mathcal{R}}^{N}) times L^{2}_{g}({mathcal{R}}^{N}).$ We succeed to extend some of our earlier results concerning the asymptotic behaviour of the solution of the problem.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A note on the dimension of the global attractor for an abstract semilinear hyperbolic problem

We study a semilinear hyperbolic problem, written as a second order evolution equation in an infinite-dimensional Hilbert space. Assuming existence of the global attractor, we estimate its fractal dimension explicitly in terms of the data. Despite its elementary character, our technique gives reasonable results. Notably, we require no additional regularity, although the nonlinear damping is all...

full text

Strong Global Attractor for a Quasilinear Nonlocal Wave Equation on R

We study the long time behavior of solutions to the nonlocal quasilinear dissipative wave equation utt − φ(x)‖∇u(t)‖∆u+ δut + |u|u = 0, in RN , t ≥ 0, with initial conditions u(x, 0) = u0(x) and ut(x, 0) = u1(x). We consider the case N ≥ 3, δ > 0, and (φ(x))−1 a positive function in LN/2(RN ) ∩ L∞(RN ). The existence of a global attractor is proved in the strong topology of the space D1,2(RN )×...

full text

A Note on the Nonlocal Boundary Value Problem for Hyperbolic-parabolic Differential Equations

The nonlocal boundary value problem        d 2 u(t) dt 2 + Au(t) = f (t)(0 ≤ t ≤ 1), du(t) dt + Au(t) = g(t)(−1 ≤ t ≤ 0), u(−1) = αu (µ) + βu (λ) + ϕ, |α|, |β| ≤ 1, 0 < µ, λ ≤ 1 for differential equation in a Hilbert space H with the self-adjoint positive definite operator A is considered. The stability estimates for the solution of this problem are established. In applications, the stab...

full text

The existence of global attractor for a Cahn-Hilliard/Allen-Cahn‎ ‎equation

In this paper, we consider a Cahn-Hillard/Allen-Cahn equation. By using the semigroup and the classical existence theorem of global attractors, we give the existence of the global attractor in H^k(0

full text

Global Attractor for a Parabolic-Hyperbolic Penrose-Fife Phase Field System

A singular nonlinear parabolic-hyperbolic PDE’s system describing the evolution of a material subject to a phase transition is considered. The goal of the present paper is to analyze the asymptotic behaviour of the associated dynamical system from the point of view of global attractors. The physical variables involved in the process are the absolute temperature θ (whose evolution is governed by...

full text

On a Nonlocal Eigenvalue Problem

We consider a nonlocal eigenvalue problem which arises in the study of stability of point-condensation solutions in some reaction-diiusion systems. We give some suucient (and explicit) conditions for the stability in the general case.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 2

pages  159- 168

publication date 2017-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023