Girth, minimum degree, independence, and broadcast independence

Authors

Abstract:

An independent broadcast on a connected graph $G$is a function $f:V(G)to mathbb{N}_0$such that, for every vertex $x$ of $G$, the value $f(x)$ is at most the eccentricity of $x$ in $G$,and $f(x)>0$ implies that $f(y)=0$ for every vertex $y$ of $G$ within distance at most $f(x)$ from $x$.The broadcast independence number $alpha_b(G)$ of $G$is the largest weight $sumlimits_{xin V(G)}f(x)$of an independent broadcast $f$ on $G$.It is known that $alpha(G)leq alpha_b(G)leq 4alpha(G)$for every connected graph $G$,where $alpha(G)$ is the independence number of $G$.If $G$ has girth $g$ and minimum degree $delta$,we show that $alpha_b(G)leq 2alpha(G)$provided that $ggeq 6$ and $deltageq 3$or that $ggeq 4$ and $deltageq 5$.Furthermore, we show that, for every positive integer $k$,there is a connected graph $G$ of girth at least $k$ and minimum degree at least $k$ such that $alpha_b(G)geq 2left(1-frac{1}{k}right)alpha(G)$.Our results imply that lower bounds on the girth and the minimum degreeof a connected graph $G$can lower the fraction $frac{alpha_b(G)}{alpha(G)}$from $4$ below $2$, but not any further.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Independence, odd girth, and average degree

We prove several best-possible lower bounds in terms of the order and the average degree for the independence number of graphs which are connected and/or satisfy some odd girth condition. Our main result is the extension of a lower bound for the independence number of triangle-free graphs of maximum degree at most 3 due to Heckman and Thomas [A New Proof of the Independence Ratio of Triangle-Fr...

full text

On the Broadcast Independence Number of Caterpillars

Let G be a simple undirected graph. A broadcast on G is a function f : V (G) → N such that f(v) ≤ eG(v) holds for every vertex v of G, where eG(v) denotes the eccentricity of v in G, that is, the maximum distance from v to any other vertex of G. The cost of f is the value cost(f) = ∑ v∈V (G) f(v). A broadcast f on G is independent if for every two distinct vertices u and v in G, dG(u, v) > max{...

full text

The Independence Number of Graphs with Large Odd Girth

Let G be an r-regular graph of order n and independence number α(G). We show that if G has odd girth 2k + 3 then α(G) ≥ n1−1/kr1/k . We also prove similar results for graphs which are not regular. Using these results we improve on the lower bound of Monien and Speckenmeyer, for the independence number of a graph of order n and odd girth 2k + 3. AMS Subject Classification. 05C15 §

full text

The Independence Number of Dense Graphs with Large Odd Girth

Let G be a graph with n vertices and odd girth 2k+3. Let the degree of a vertex v of G be d1(v). Let (G) be the independence number of G. Then we show (G) 2 ( k 1 k ) "X v2G d1(v) 1 k 1 #(k 1)=k . This improves and simpli es results proven by Denley [1]. AMS Subject Classi cation. 05C35 Let G be a graph with n vertices and odd girth 2k + 3. Let di(v) be the number of points of degree i from a v...

full text

Approximating the Minimum Maximal Independence Number

We consider the problem of approximating the size of a minimum non-extendible independent set of a graph, also known as the minimum dominating independence number. We strengthen a result of Irving [2] to show that there is no constant > 0 for which this problem can be approximated within a factor of n 10 in polynomial time, unless P = NP. This is the strongest lower bound we are aware of for po...

full text

Semi-regular graphs of minimum independence number

There are many functions of the degree sequence of a graph which give lower bounds on the independence number of the graph. In particular, for every graph G, α(G) ≥ R(d(G)), where R is the residue of the degree sequence of G. We consider the precision of this estimate when it is applied to semi-regular degree sequences. We show that the residue nearly always gives the best possible estimate on ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 2

pages  131- 139

publication date 2019-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023