Genetic analysis of Biochemical and Physiological Traits using Haymen’s Graphical Approach in Lines and F2 Progenies of Maize (Zea mays L.)

author

  • Rahimi, Mehdi Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
Abstract:

The diallel mating design is an important tool used by plant breeding programs to obtain information on trait inheritance. Knowledge of gene action, heritability and genetic advance from selection is a prerequisite for starting a breeding program for developing varieties of maize. Five maize S7 lines and their F2 progenies were studied in a 5 × 5 half-diallel crossing design to evaluate the gene action and the heritability of biochemical and physiological traits. Parents and their F2 hybrids were planted in a randomized complete block design with three replications at the Research Farm of Graduate University of Advanced Technology (Kerman, Iran) in 2017 cropping year, and chlorophyll (Chl), proline, protein, carotenoid and reducing sugars traits were evaluated. Analysis of variance showed significant differences among genotypes for the studied traits at 1% probability level. The graphical results of Hayman's analysis showed the role of over-dominance genes effects in controlling proline content, sugars content, Chl a, Chl b, total Chl and carotenoids traits whiles the protein content trait was controlled by the incomplete dominance of genes. The narrow-sense heritability for carotenoid and proline content traits were 0.14, for protein content was 0.44 and for other traits were varaied in this range. The results of this study showed that the use of heterozygosity and the production of hybrid varieties can be used to breeding traits such as proline content, sugars content, Chl a, Chl b, total Chl and carotenoids. However, for breeding of protein content, use of both methods (selection and production of hybrid) are proposed.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Combining Ability Study of Biochemical and Physiological Traits of Maize (Zea mays L.) Using fourth Dialllel Griffing’s Method

Biochemical and physiological traits are affected by environmental stresses and therefore the breeding of these traits will play an effective role in stress tolerance. In this study, hybrids of five S7 lines of maize in a 5 × 5 half-diallel design were investigated in order to study the combining ability of biochemical and physiological traits of maize at the Research Farm of Graduate Universit...

full text

Influence of Zinc and Cadmium on Physiological and Biochemical Characteristics of Maize (Zea mays L.)

This research was carried out as pod cultivation to evaluate effect of different level of zinc and cadmium on agro physiological traits of Maize via factorial experiment based on completelly randomized design with three replications along 2012-2013. The factors included different level of Zinc (Zn1=0 or Control, Zn2=15 and Zn3=30 mg.kg-1) and Cadmium (Cd1=0 or control, Cd2=10, Cd3=20 and Cd4=30...

full text

Genetic Diversity in Maize (Zea mays L.) Inbred Lines

Thirty yellow inbred lines of normal maize were evaluated for thirteen parameters at the experimental field of Hajee Mohammad Danesh Science and Technology University during 2010-11 to study the genetic divergence using multivariate analysis. The thirty inbreds fell into six distinct clusters. The intra-cluster distances in all the six clusters were more or less low, indicating that the genotyp...

full text

Genetic Analysis for Yield Potential and Quality Traits in Maize (Zea mays L.)

Abstract: Grain yield is a complex phenomenon which results from the interaction of various contributing factors highly influenced by environmental variation. Phenotypic selection cannot directly improve the characters in heterozygous crops like maize unless dissected by genetic analysis. Gene action for various quantitative and qualitative traits was explored in a complete set of diallel invol...

full text

Maize (Zea mays L.).

Agrobacterium tumefaciens-mediated transformation is an effective method for introducing genes into maize. In this chapter, we describe a detailed protocol for genetic transformation of the maize genotype Hi II. Our starting plant material is immature embryos cocultivated with an Agrobacterium strain carrying a standard binary vector. In addition to step-by-step laboratory transformation proced...

full text

T Evaluation of genes effect and combining ability in selected maize (Zea mays L.) lines

Maize is one of the most important grain and forage plants that has a unique role in the food and feed, especially poultry feed. To study the genetic effects, genes act and identify the best hybrid combination for morphological traits, experiment was carried out in diallel cross layout using 19 parents at Gorgan Agricultural Research Station, Iran in 2013. The progenies were planted in three re...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 2

pages  1- 12

publication date 2021-03

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023