GENERALIZED GORENSTEIN DIMENSION OVER GROUP RINGS
Authors
Abstract:
Let $(R, m)$ be a commutative noetherian local ring and let $Gamma$ be a finite group. It is proved that if $R$ admits a dualizing module, then the group ring $Rga$ has a dualizing bimodule as well. Moreover, it is shown that a finitely generated $Rga$-module $M$ has generalized Gorenstein dimension zero if and only if it has generalized Gorenstein dimension zero as an $R$-module.
similar resources
Gorenstein injective dimension, Bass formula and Gorenstein rings
Let (R,m, k) be a noetherian local ring. It is well-known that R is regular if and only if the injective dimension of k is finite. In this paper it is shown that R is Gorenstein if and only if the Gorenstein injective dimension of k is finite. On the other hand a generalized version of the so-called Bass formula is proved for finitely generated modules of finite Gorenstein injective dimension. ...
full textIntersection Multiplicities over Gorenstein Rings
LetR be a complete local ring of dimension d over a perfect field of prime characteristic p, and let M be an R-module of finite length and finite projective dimension. S. Dutta showed that the equality limn→∞ `(F n R(M)) pnd = `(M) holds when the ring R is a complete intersection or a Gorenstein ring of dimension at most 3. We construct a module over a Gorenstein ring R of dimension five for wh...
full textGorenstein homological dimensions with respect to a semi-dualizing module over group rings
Let R be a commutative noetherian ring and Γ a finite group. In this paper,we study Gorenstein homological dimensions of modules with respect to a semi-dualizing module over the group ring . It is shown that Gorenstein homological dimensions of an -RΓ module M with respect to a semi-dualizing module, are equal over R and RΓ .
full textRings with Finite Gorenstein Global Dimension
We find new classes of non noetherian rings which have the same homological behavior that Gorenstein rings.
full textPeriodic modules over Gorenstein local rings
It is proved that the minimal free resolution of a module M over a Gorenstein local ring R is eventually periodic if, and only if, the class of M is torsion in a certain Z[t ±1 ]-module associated to R. This module, denoted J(R), is the free Z[t ±1 ]-module on the isomorphism classes of finitely generated R-modules modulo relations reminiscent of those defining the Grothendieck group of R. The ...
full textCOTORSION DIMENSIONS OVER GROUP RINGS
Let $Gamma$ be a group, $Gamma'$ a subgroup of $Gamma$ with finite index and $M$ be a $Gamma$-module. We show that $M$ is cotorsion if and only if it is cotorsion as a $Gamma'$-module. Using this result, we prove that the global cotorsion dimensions of rings $ZGamma$ and $ZGamma'$ are equal.
full textMy Resources
Journal title
volume 5 issue 1
pages 53- 64
publication date 2017-09-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023