Generalized Douglas-Weyl Finsler Metrics

Authors

  • A. Tayebi University of Qom
Abstract:

In this paper, we study generalized Douglas-Weyl Finsler metrics. We find some conditions under which the class of generalized Douglas-Weyl (&alpha, &beta)-metric with vanishing S-curvature reduce to the class of Berwald metrics.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

On Special Generalized Douglas-Weyl Metrics

In this paper, we study a special class of generalized Douglas-Weyl metrics whose Douglas curvature is constant along any Finslerian geodesic. We prove that for every Landsberg metric in this class of Finsler metrics, ? = 0 if and only if H = 0. Then we show that every Finsler metric of non-zero isotropic flag curvature in this class of metrics is a Riemannian if and only if ? = 0.

full text

on special generalized douglas-weyl metrics

in this paper, we study a special class of generalized douglas-weyl metrics whose douglas curvature is constant along any finslerian geodesic. we prove that for every landsberg metric in this class of finsler metrics, ? = 0 if and only if h = 0. then we show that every finsler metric of non-zero isotropic flag curvature in this class of metrics is a riemannian if and only if ? = 0.

full text

On Generalized Douglas-Weyl Spaces

In this paper, we show that the class of R-quadratic Finsler spaces is a proper subset of the class of generalized Douglas-Weyl spaces. Then we prove that all generalized Douglas-Weyl spaces with vanishing Landsberg curvature have vanishing the non-Riemannian quantity H, generalizing result previously only known in the case of R-quadratic metric. Also, this yields an extension of well-known Num...

full text

On BC-generalized Landsberg Finsler metrics

Equality of hh -curvatures of the Berwald and Cartan connections leads to a new class of Finsler metrics, socalled BC-generalized Landsberg metrics. Here, we prove that every BC-generalized Landsberg metric of scalar flag curvature with dimension greater than two is of constant flag curvature.

full text

on bc-generalized landsberg finsler metrics

equality of -curvatures of the berwald and cartan connections leads to a new class of finsler metrics, so-called bc-generalized landsberg metrics. here, we prove that every bc-generalized landsberg metric of scalar flag curvature with dimension greater than two is of constant flag curvature.

full text

On C3-Like Finsler Metrics

In this paper, we study the class of of C3-like Finsler metrics which contains the class of semi-C-reducible Finsler metric. We find a condition on C3-like metrics under which the notions of Landsberg curvature and mean Landsberg curvature are equivalent.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 10  issue None

pages  67- 75

publication date 2015-10

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023