General Formulation to Investigate Scattering from Multilayer Lossy Inhomogeneous Metamaterial Planar Structures

Authors

  • M. Kiani Department of Electrical Engineering, Iran
Abstract:

This paper presents a general formulation to investigate the scattering from Multilayer Lossy Inhomogeneous Metamaterial Planar Structure (MLIMPS) with arbitrary number of layers and polarization. First, the dominating differential equation of transverse components of electromagnetic fields in each layers derived. Considering the general form of solution of the differential equations and the boundary conditions of the problem a set of linear equations is obtained. By solving these equations, the electromagnetic fields in all layers and reflection and transmission coefficients are calculated. This method is applied in an interesting example for two bi-layered structures with inhomogeneous conventional material and metamaterial profile for constitutive parameters. Results which are presented in example are useful for constructing general duality between conventional material and metamaterials.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A Higher Order B-Splines 1-D Finite Element Analysis of Lossy Dispersive Inhomogeneous Planar Layers

In this paper we propose an accurate and fast numerical method to obtain scattering fields from lossy dispersive inhomogeneous planar layers for both TE and TM polarizations. A new method is introduced to analyze lossy Inhomogeneous Planar Layers. In this method by applying spline based Galerkin’s method of moment to scalar wave equation and imposing boundary conditions we obtain reflection and...

full text

Analysis of Lossy Inhomogeneous Planar Layers Using Finite Difference Method

A general method is introduced to frequency domain analysis of lossy Inhomogeneous Planar Layers (IPLs). In this method, the IPLs are subdivided to several thin homogeneous layers, at first. Then the electric and magnetic fields are obtained using second order finite difference method. The accuracy of the method is studied using analysis of some special types of IPLs.

full text

A New Theorem Concerning Scattering of Electromagnetic Waves in Multilayered Metamaterial Spherical Structures

The proposed theorem in this paper is indicative of a kind of duality in the propagation of waves in the dual media of and in the spherical structures. Independent of wave frequency, the number of layers, their thickness, and the type of polarization, this theorem holds true in case of any change in any of these conditions. Theorem: Consider a plane wave incident on a multilayered spheric...

full text

Light scattering by nonlinear cylindrical multilayer structures

We study light scattering by cylindrical multilayer structures containing Kerr-type nonlinear materials. We develop a new semi-analytical method for solving such nonlinear problems by reducing the original 2D system by a 1D nonlinear Helmholtz equation. We apply our method for the case of wave scattering by the core-shell metal-dielectric nanowire and show that the nonlinearity allows us to con...

full text

Refraction at the Interface of a Lossy Metamaterial

The refraction phenomenon at the interface of an ordinary material and a lossy metamaterial has been investigated. For oblique incidence on the lossy metamaterial, the planes of constant amplitude of the refracted wave are parallel to the interface and the plane of constant phases make a real angle with the interface (real refraction angle). The real refraction angle and hence, the real refract...

full text

Fourier transform light scattering of inhomogeneous and dynamic structures.

Fourier transform light scattering (FTLS) is a novel experimental approach that combines optical microscopy, holography, and light scattering for studying inhomogeneous and dynamic media. In FTLS the optical phase and amplitude of a coherent image field are quantified and propagated numerically to the scattering plane. Because it detects all the scattered angles (spatial frequencies) simultaneo...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 9  issue 1

pages  20- 26

publication date 2013-03

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023