G-frames and Hilbert-Schmidt operators

Authors

Abstract:

In this paper we introduce and study Besselian $g$-frames. We show that the kernel of associated synthesis operator for a Besselian $g$-frame is finite dimensional. We also introduce $alpha$-dual of a $g$-frame and we get some results when we use the Hilbert-Schmidt norm for the members of a $g$-frame in a finite dimensional Hilbert space.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

g-frames and hilbert-schmidt operators

in this paper we introduce and study besselian $g$-frames. we show that the kernel of associated synthesis operator for a besselian $g$-frame is finite dimensional. we also introduce $alpha$-dual of a $g$-frame and we get some results when we use the hilbert-schmidt norm for the members of a $g$-frame in a finite dimensional hilbert space.

full text

$G$-Frames for operators in Hilbert spaces

$K$-frames as a generalization of frames were introduced by L. Gu{a}vruc{t}a to study atomic systems on Hilbert spaces which allows, in a stable way, to reconstruct elements from the range of the bounded linear operator $K$ in a Hilbert space. Recently some generalizations of this concept are introduced and some of its difference with ordinary frames are studied. In this paper, we give a new ge...

full text

Trace class operators and Hilbert-Schmidt operators

If X,Y are normed spaces, let B(X,Y ) be the set of all bounded linear maps X → Y . If T : X → Y is a linear map, I take it as known that T is bounded if and only if it is continuous if and only if E ⊆ X being bounded implies that T (E) ⊆ Y is bounded. I also take it as known that B(X,Y ) is a normed space with the operator norm, that if Y is a Banach space then B(X,Y ) is a Banach space, that ...

full text

*-frames for operators on Hilbert modules

$K$-frames which are generalization of frames on Hilbert spaces‎, ‎were introduced‎ ‎to study atomic systems with respect to a bounded linear operator‎. ‎In this paper‎, ‎$*$-$K$-frames on Hilbert $C^*$-modules‎, ‎as a generalization of $K$-frames‎, ‎are introduced and some of their properties are obtained‎. ‎Then some relations‎ ‎between $*$-$K$-frames and $*$-atomic systems with respect to a...

full text

Hilbert-Schmidt operators and tensor products of Hilbert spaces

Let V ⊗HS W be the completion of V ⊗alg W in the norm defined by this inner product. V ⊗HS W is a Hilbert space; however, as Garrett shows it is not a categorical tensor product, and in fact if V and W are Hilbert spaces there is no Hilbert space that is their categorical tensor product. (We use the subscript HS because soon we will show that V ⊗HS W is isomorphic as a Hilbert space to the Hilb...

full text

The Hilbert-Schmidt property of feedback operators

Ruth Curtain Department of Mathematics, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands. E-mail:[email protected], Kalle Mikkola Helsinki University of Technology, Institute of Mathematics, Box 1100, 02015 HUT, Finland. E-mail:[email protected], Amol Sasane Department of Mathematics, London School of Economics, Houghton Street, London WC2A 2AE, United Kingdom....

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 37  issue No. 4

pages  141- 155

publication date 2011-12-15

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023