Fuzzy Adaptive Granulation Multi-Objective Multi-microgrid Energy Management

author

  • F. Sabahi Department of Electrical Engineering, Faculty of Engineering, Urmia University, Urmia, Iran.
Abstract:

This paper develops an energy management approach for a multi-microgrid (MMG) taking into account multiple objectives involving plug-in electric vehicle (PEV), photovoltaic (PV) power, and a distribution static compensator (DSTATCOM) to improve power provision sharing. In the proposed approach, there is a pool of fuzzy microgrids granules that they compete with each other to prolong their lives while monitored and evaluated by the specific fuzzy sets. In addition, based on the hourly reconfiguration of microgrids (MGs), granules learn to dispatch cost-effective resources. To promote interactive service, a well-defined, multi-objective approach is derived from fuzzy granulation analysis to improve power quality in MMGs. A combination of the meta-heuristic approach of genetic algorithm (GA) and particle swarm optimization (PSO) eliminates the computational difficulty of the nonlinearity and uncertainty analysis of the system and improves the precision of the results. The proposed approach is successfully applied to a 69-bus MMG test with results reported in terms of stored energy improvement, daily voltage profile improvement, MMG operations, and cost reduction.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A Fuzzy Multi-Objective Optimization Model for Production and Consumption Management in Energy Micro Smart Grids

Electricity is one of the most important carriers of energy used in buildings. By introducing energy smart grids (SG) and energy micro smart grids (MSGs) alongside smart buildings, a good platform has been provided for optimal planning of electricity production and consumption. In this paper, an MSG consists of renewable resources, diesel generators and cell batteries in bidirectional connectio...

full text

Self-adaptive Genetic Algorithm and Fuzzy Decision Based Multi- objective Optimization in Microgrid with DGs

Microgrid is one practical infrastructure to integrate Distributed Generations (DGs) and local loads. Its optimal operating strategy has aroused great attention in recent years. This paper mainly focuses on the multi-objective optimization of DGs in microgrid by using self-adaptive genetic algorithm (GA) and fuzzy decision. Five objective functions are taken into account comprising voltage offs...

full text

A fuzzy multi-objective model for a project management problem

In this research, the multi-objective project management decision problem with fuzzy goals and fuzzy constraints are considered. We constitute α-cut approach and two various fuzzy goal programming solution methods for solving the Multi-Objective Project Management (MOPM) decision problem under fuzzy environments. The Interactive fuzzy multi-objective linear programming (i-FMOLP) and Weighted Ad...

full text

Multi-granulation fuzzy rough sets

Based on analysis of Pawlak’s rough set model in the view of single equivalence relation and the theory of fuzzy set, associated with multi-granulation rough set models proposed by Qian, two types of new rough set models are constructed, which are multi-granulation fuzzy rough sets. It follows the research on the properties of the lower and upper approximations of the new multi-granulation fuzz...

full text

Optimal Operation Management of Grid-connected Microgrid Using Multi-Objective Group Search Optimization Algorithm

Utilizing distributed generations (DGs) near load points has introduced the concept of microgrid. However, stochastic nature of wind and solar power generation as well as electricity load makes it necessary to utilize an energy management system (EMS) to manage hourly power of microgrid and optimally supply the demand. As a result, this paper utilizes demand response program (DRP) and battery t...

full text

Adaptive Sliding Mode Control of Multi-DG, Multi-Bus Grid-Connected Microgrid

This paper proposes a new adaptive controller for the robust control of a grid-connected multi-DG microgrid (MG) with the main aim of output active power and reactive power regulation as well as busbar voltage regulation of DGs. In addition, this paper proposes a simple systematic method for the dynamic analysis including the shunt and series faults that are assumed to occur in the MG. The pres...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 4

pages  481- 489

publication date 2020-11-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023