Frequency Analysis of Embedded Orthotropic Circular and Elliptical Micro/Nano-Plates Using Nonlocal Variational Principle
Authors
Abstract:
In this paper, a continuum model based on the nonlocal elasticity theory is developed for vibration analysis of embedded orthotropic circular and elliptical micro/nano-plates. The nano-plate is bounded by a Pasternak foundation. Governing vibration equation of the nonlocal nano-plate is derived using Nonlocal Classical Plate Theory (NCPT). The weighted residual statement and the Galerkin method are applied to obtain a Quadratic Functional. The Ritz functions are used to form an assumed expression for transverse displacement which satisfies the kinematic boundary conditions. The Ritz functions eliminate the need for mesh generation and thus large degrees of freedom arising in discretization methods such as Finite Element Method (FEM). Effects of nonlocal parameter, lengths of nano-plate, aspect ratio, mode number, material properties and foundation parameters on the nano-plate natural frequencies are investigated. It is shown that the natural frequencies depend on the non-locality of the micro/nano-plate, especially at small dimensions.
similar resources
Vibration of Thermally Post-buckled Orthotropic Circular Plates
Axisymmetric vibrations of a statically buckled polar orthotropic circular plate due to uniform temperature rise have been studied numerically. Effects of geometric nonlinearities have been incorporated into the problem formulation. The problem is challenging because the buckled configuration is unknown a priori. By assuming that the amplitude of plate’s vibration and the additional strains ind...
full textVibration Analysis of Circular Magneto-Electro-Elastic Nano-plates Based on Eringen s Nonlocal Theory
The present work mainly studies the free vibration of circular magneto-electro-elastic (MEE) nano-plates based on the Kirchhoff’s plate theory within the framework of nonlocal elasticity theory to account for the small scale effect. The MEE nano-plate studied here is considered to be fully clamped and subjected to the external magnetic and electric potentials. Using nonlocal constitutive relati...
full textNonlocal Bending Analysis of Bilayer Annular/Circular Nano Plates Based on First Order Shear Deformation Theory
In this paper, nonlinear bending analysis of bilayer orthotropic annular/circular graphene sheets is studied based on the nonlocal elasticity theory. The equilibrium equations are derived in terms of generalized displacements and rotations considering the first-order Shear deformation theory (FSDT). The nonlinear governing equations are solved using the differential quadrature method (DQM) whic...
full textVibration Analysis of Orthotropic Triangular Nanoplates Using Nonlocal Elasticity Theory and Galerkin Method
In this article, classical plate theory (CPT) is reformulated using the nonlocal differential constitutive relations of Eringen to develop an equivalent continuum model for orthotropic triangular nanoplates. The equations of motion are derived and the Galerkin’s approach in conjunction with the area coordinates is used as a basis for the solution. Nonlocal theories are employed to bring out the...
full textBuckling Analysis of Polar Orthotropic Circular and Annular Plates of Uniform and Linearly Varying Thickness with Different Edge Conditions
This paper investigates symmetrical buckling of orthotropic circular and annular plates of continuous variable thickness. Uniform compression loading is applied at the plate outer boundary. Thickness varies linearly along radial direction. Inner edge is free, while outer edge has different boundary conditions: clamped, simply and elastically restraint against rotation. The optimized Ritz method...
full textFree and Forced Transverse Vibration Analysis of Moderately Thick Orthotropic Plates Using Spectral Finite Element Method
In the present study, a spectral finite element method is developed for free and forced transverse vibration of Levy-type moderately thick rectangular orthotropic plates based on first-order shear deformation theory. Levy solution assumption was used to convert the two-dimensional problem into a one-dimensional problem. In the first step, the governing out-of-plane differential equations are tr...
full textMy Resources
Journal title
volume 7 issue 1
pages 13- 27
publication date 2015-03-30
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023