Free vibration analysis of variable stiffness composite laminated thin skew plates using IGA

Authors

Abstract:

A NURBS-based isogeometric finite element formulation is developed and adopted to the free vibration analysis of finite square and skew laminated plates. Variable stiffness plies are assumed due to implementation of curvilinear fiberreinforcements. It is assumed due to employment of tow placement technology, in each ply of variable stiffness composite laminated plate the fiber reinforcement orientation angle is changed linearly with respect to longitudinal geometry coordinate. The classic plate theory is utilized for structural model description. The cubic NURBS basis functions are employed to approximate the geometry of the plate while simultaneously serve as the shape functions for solution field approximation in the analysis. To show the effectiveness and accuracy of the developed formulation, some representativeresults are extracted and compared to similar items available in the literature. The effects of curvilinear fiber angles, different geometries and various end constraints are evaluated on the variable stiffness composite laminated skew panel behavior.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Buckling Studies on Laminated Composite Skew Plates

This paper presents buckling studies made on skew plates using finite element. The effects of the skew angle, aspect ratio, length-to-thickness-ratio, fibre orientation angle, and numbers of layers in the laminate and laminate sequence on the critical buckling load factor (Kcr) of antisymmetric composite laminates have also been presented. The critical buckling load factor (Kcr) is found to inc...

full text

Buckling Studies on Laminated Composite Skew Plates

This paper presents buckling studies made on skew plates using finite element. The effects of the skew angle, aspect ratio, length-to-thickness-ratio, fibre orientation angle, and numbers of layers in the laminate and laminate sequence on the critical buckling load factor (Kcr) of antisymmetric composite laminates have also been presented. The critical buckling load factor (Kcr) is found to inc...

full text

Buckling Studies on Laminated Composite Skew Plates

This paper presents buckling studies made on skew plates using finite element. The effects of the skew angle, aspect ratio, length-to-thickness-ratio, fibre orientation angle, and numbers of layers in the laminate and laminate sequence on the critical buckling load factor (Kcr) of antisymmetric composite laminates have also been presented. The critical buckling load factor (Kcr) is found to inc...

full text

Buckling Studies on Laminated Composite Skew Plates

This paper presents buckling studies made on skew plates using finite element. The effects of the skew angle, aspect ratio, length-to-thickness-ratio, fibre orientation angle, and numbers of layers in the laminate and laminate sequence on the critical buckling load factor (Kcr) of antisymmetric composite laminates have also been presented. The critical buckling load factor (Kcr) is found to inc...

full text

Buckling Studies on Laminated Composite Skew Plates

This paper presents buckling studies made on skew plates using finite element. The effects of the skew angle, aspect ratio, length-to-thickness-ratio, fibre orientation angle, and numbers of layers in the laminate and laminate sequence on the critical buckling load factor (Kcr) of antisymmetric composite laminates have also been presented. The critical buckling load factor (Kcr) is found to inc...

full text

Buckling Studies on Laminated Composite Skew Plates

This paper presents buckling studies made on skew plates using finite element. The effects of the skew angle, aspect ratio, length-to-thickness-ratio, fibre orientation angle, and numbers of layers in the laminate and laminate sequence on the critical buckling load factor (Kcr) of antisymmetric composite laminates have also been presented. The critical buckling load factor (Kcr) is found to inc...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 2

pages  171- 188

publication date 2018-07-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023