Free Vibration Analysis of BNNT with Different Cross-Sections via Nonlocal FEM
Authors
Abstract:
In the present study, free vibration behaviors of of carbon nanotube (CNT) and boron nitride nanotube (BNNT) have been investigated via Eringen’s nonlocal continuum theory. Size effect has been considered via nonlocal continuum theory. Nanotubes have become popular in the world of science thanks to their characteristic properties. In this study, free vibrations of Boron Nitride Nanotube (BNNT) and Carbon Nanotube (CNT) are calculated using the Nonlocal Elasticity Theory. Frequency values are found via both analytical and finite element method (FEM). Galerkin weighted residual method is used to obtain the finite element equations. BNNT and CNT are modeled as Euler - Bernoulli Beam and solutions are gained by using four different cross-section geometries with three boundary conditions. Selected geometries are circle, rectangle, triangle, and square. Frequency values are given in tables and graphs. The effect of cross-section, boundary conditions and length scale parameter on frequencies has been investigated in detail for BNNT.
similar resources
Analytical Solution for Free Vibration of a Variable Cross-Section Nonlocal Nanobeam
In this article, small scale effects on free vibration analysis of non-uniform nanobeams is discussed. Small scale effects are modelled after Eringen’s nonlocal elasticity theory while the non-uniformity is presented by exponentially varying width among the beams length with constant thickness. Analytical solution is achieved for free vibration with different boundary conditions. It is shown th...
full textFree Vibration Analysis of Radial Pneumatic Tire Using FEM
A finite element modeling of tire using Ansys is used to analyze the free vibration of radial pneumatic tires. The natural frequencies and mode shapes of pneumatic tires are investigated. The effects of some parameters such inflation pressure, tread pattern, ply-angles and thickness of belts on the natural frequency of tires are investigated. Keywords— natural frequency, inflation pressure, tre...
full textRefined plate theory for free vibration analysis of FG nanoplates using the nonlocal continuum plate model
In this article, the free vibration behavior of nanoscale FG rectangular plates is studied within the framework of the refined plate theory (RPT) and small-scale effects are taken into account. Using the nonlocal elasticity theory, the governing equations are derived for single-layered FG nanoplate. The Navier’s method is employed to obtain closed-form solutions for rectangular nanoplates assum...
full textFree and Forced Vibration Analysis of Composite Laminated Conical Shells under Different Boundary Conditions Via Galerkin Method
In this paper, natural frequency and response of forced vibration of composite laminated conical shells under different boundary conditions are investigated. To this end, equations of Donnell's thin shell theory are used as governing equations. The analytical Galerkin method together with beam mode shapes as weighting functions is employed to solve the problem. Due to importance of boundary con...
full textFree Vibration Analysis of Functionally Graded Beams with Cracks
This study introduces the free vibration analysis of multilayered symmetric sandwich Timoshenko beams, made of functionally graded materials with two edge cracked, using the finite element method and linear elastic fracture mechanic theory. The FG beam consists of 50 layers, located symmetrically to the neutral plane, whose material properties distribution change along the beam thickness, accor...
full textVibration and Stability Analysis of a Pasternak Bonded Double-GNR-System Based on Different Nonlocal Theories
This study deals with the vibration and stability analysis of double-graphene nanoribbon-system (DGNRS) based on different nonlocal elasticity theories such as Eringen's nonlocal, strain gradient, and modified couple stress within the framework of Rayleigh beam theory. In this system, two graphene nanoribbons (GNRs) are bonded by Pasternak medium which characterized by Winkler modulus and shear...
full textMy Resources
Journal title
volume 49 issue 2
pages 252- 260
publication date 2018-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023