Frames in super Hilbert modules
author
Abstract:
In this paper, we define super Hilbert module and investigate frames in this space. Super Hilbert modules are generalization of super Hilbert spaces in Hilbert C*-module setting. Also, we define frames in a super Hilbert module and characterize them by using of the concept of g-frames in a Hilbert C*-module. Finally, disjoint frames in Hilbert C*-modules are introduced and investigated.
similar resources
*-frames for operators on Hilbert modules
$K$-frames which are generalization of frames on Hilbert spaces, were introduced to study atomic systems with respect to a bounded linear operator. In this paper, $*$-$K$-frames on Hilbert $C^*$-modules, as a generalization of $K$-frames, are introduced and some of their properties are obtained. Then some relations between $*$-$K$-frames and $*$-atomic systems with respect to a...
full textFrames for Hilbert C*-modules
There is growing evidence that Hilbert C*-module theory and the theory of wavelets and Gabor (i.e. Weyl-Heisenberg) frames are tightly related to each other in many aspects. Both the research fields can benefit from achievements of the other field. The goal of the talk given at the mini-workshop was to give an introduction to the theory of module frames and to Hilbert C*modules showing key anal...
full textG-frames in Hilbert Modules Over Pro-C*-algebras
G-frames are natural generalizations of frames which provide more choices on analyzing functions from frame expansion coefficients. First, they were defined in Hilbert spaces and then generalized on C*-Hilbert modules. In this paper, we first generalize the concept of g-frames to Hilbert modules over pro-C*-algebras. Then, we introduce the g-frame operators in such spaces and show that they sha...
full text$ast$-K-g-Frames in Hilbert $mathcal{A}$-modules
In this paper, we introduce the concepts of $ast$-K-g-Frames in Hilbert $mathcal{A}$-modules and we establish some results.
full textFusion Frames and G-Frames in Hilbert C*-Modules
The notion of frame has some generalizations such as frames of subspaces, fusion frames and g -frames. In this paper we introduce frames of submodules, fusion frames and g -frames in Hilbert C∗ -modules and we show that they share many useful properties with their corresponding notions in Hilbert space. We also generalize a perturbation result in frame theory to g -frames in Hilbert spaces.
full textMy Resources
Journal title
volume 09 issue 1
pages 129- 142
publication date 2018-01-01
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023