Fractional Order Generalized Thermoelastic Functionally Graded Solid with Variable Material Properties

Authors

  • A Sur Department of Applied Mathematics, University of Calcutta
  • M Kanoria Department of Applied Mathematics, University of Calcutta
Abstract:

In this work, a new mathematical model of thermoelasticity theory has been considered in the context of a new consideration of heat conduction with fractional order theory. A functionally graded isotropic unbounded medium is considered subjected to a periodically varying heat source in the context of space-time non-local generalization of three-phase-lag thermoelastic model and Green-Naghdi models, in which the thermophysical properties are temperature dependent. The governing equations are expressed in Laplace-Fourier double transform domain and solved in that domain. Then the inversion of the Fourier transform is carried out by using residual calculus, where poles of the integrand are obtained numerically in complex domain by using Laguerre’s method and the inversion of Laplace transform is done numerically using a method based on Fourier series expansion technique. The numerical estimates of the thermal displacement, temperature and thermal stress are obtained for a hypothetical material. Finally, the obtained results are presented graphically to show the effect of non-local fractional parameter on thermal displacement, temperature and thermal stress. A comparison of the results for different theories (three-phase-lag model, GN model II, GN model III) is presented and the effect of non-homogeneity is also shown. The results, corresponding to the cases, when the material properties are temperature independent, agree with the results of the existing literature.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A Generalized Thermo-Elastic Diffusion Problem in a Functionally Graded Rotating Media Using Fractional Order Theory

A generalized thermo-elastic diffusion problem in a functionally graded isotropic, unbounded, rotating elastic medium due to a periodically varying heat source in the context of fractional order theory is considered in our present work. The governing equations of the theory for a functionally graded material with GNIII model are established. Analytical solution of the problem is derived in Lapl...

full text

a semi-analytical solution for time-variant thermoelastic creep analysis of functionally graded rotating disks with variable thickness and properties.

abstract: a time domain semi-analytical solution to study thermoelastic creep behavior of  functionally graded rotating axisymmetric disks with variable thickness is presented. the rate type governing differential equations for the considered structure are derived and analytically solved. to solve these  equations, the disk is divided into some virtual sub-domains. general solution of  equilibr...

full text

Stress analysis and material tailoring in isotropic linear thermoelastic incompressible functionally graded rotating disks of variable thickness

We analyze axisymmetric deformations of a rotating disk with its thickness, mass density, thermal expansion coefficient and shear modulus varying in the radial direction. The disk is made of a rubberlike material that is modeled as isotropic, linear thermoelastic and incompressible. We note that the hydrostatic pressure in the constitutive relation of the material is to be determined as a part ...

full text

Thermoelastic Analysis of a Functionally Graded Simple Blade Using First-Order Shear Deformation Theory

In this article, the thermo-elastic behavior of a functionally graded simple blade subjected to the mechanical and thermal loadings is presented, applying a semi-analytical method and a variable thickness cantilever beam model. A specific temperature gradient is employed between the root and the edges of the beam. It is assumed that the mechanical and thermal properties are longitudinal directi...

full text

Elastic Analysis of Functionally Graded Variable Thickness Rotating Disk by Element Based Material Grading

The present study deals with the elastic analysis of concave thickness rotating disks made of functionally graded materials (FGMs).The analysis is carried out using element based gradation of material properties in radial direction over the discretized domain. The resulting deformation and stresses are evaluated for free-free boundary condition and the effect of grading index on the deformation...

full text

Transient Thermoelastic Deformations of a Thick Functionally Graded Plate

We study transient thermoelastic deformations of a thick functionally graded plate with edges held at a uniform temperature and either simply supported or clamped. Either the temperature or the heat flux is prescribed on the top surface of the plate with the bottom surface of the plate kept at either a uniform temperature or thermally insulated. Stresses and deformations induced due to the simu...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 1

pages  54- 69

publication date 2014-03-30

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023