Fractional order Adaptive Terminal Sliding Mode Controller Design for MPPT in a Solar Cell under Normal and Partial Shading Condition

Authors

Abstract:

In this paper, by combining fractional calculus and sliding mode control theory, a new fractional order adaptive terminal sliding mode controller is proposed for the maximum power point tracking in a solar cell. To find the maximum power point, the incremental conductance method has been used. First, a fractional order terminal sliding mode controller is designed in which the control law depends on knowing the upper bound of uncertainty in the system, but in practical application it is difficult or in some cases impossible to calculate this upper limit. In this paper, an adaptive law is given for online calculating of this parameter. The stability proof of the sliding surface, as well as the proof of finite time convergence of closed-loop system, are investigated using the Lyapunov theory. Finally, the performance of the proposed controller is evaluated both in normal and partial shading conditions. For a better comparison of the proposed controller, the performance of this controller is compared in the presence of load variations and the variations of system parameters with the conventional (integer order) terminal sliding mode control.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Observer Based Fuzzy Terminal Sliding Mode Controller Design for a Class of Fractional Order Chaotic Nonlinear Systems

This paper presents a new observer based fuzzy terminal sliding mode controller design for a class of fractional order nonlinear systems. Robustness against uncertainty and disturbance, the stability of the close loop system and the convergence of both the tracking and observer errors to zero are the merits of the proposed the observer and the controller. The high gain observer is applied to es...

full text

Design of Fractional Order Sliding Mode Controller for Chaos Suppression of Atomic Force Microscope System

A novel nonlinear fractional order sliding mode controller is proposed to control the chaotic atomic force microscope system in presence of uncertainties and disturbances. In the design of the suggested fractional order controller, conformable fractional order derivative is applied. The stability of the scheme is proved by means of the Lyapunov theory based on conformable fractional order deriv...

full text

Fractional order sliding mode controller design for antilock braking systems

Antilock braking system (ABS) is a highly nonlinear system including variation and uncertainties in the parameters due to changes in vehicle loadings, road condition, etc. It is a difficult task to design an ideal controller for ABS. In this paper, a novel robust controller named fractional order sliding mode controller (FOSMC) is proposed for ABS to regulate the slip to a desired value. The pr...

full text

Fractional order robust adaptive intelligent controller design for fractional-order chaotic systems with unknown input delay, uncertainty and external disturbances

In this paper, a fractional-order robust adaptive intelligent controller (FRAIC) is designed for a class of chaotic fractional order systems with uncertainty, external disturbances and unknown time-varying input time delay. The time delay is considered both constant and time varying. Due to changes in the equilibrium point, adaptive control is used to update the system's momentary information a...

full text

Systematic Approach to Design a Finite Time Convergent Differentiator in Second Order Sliding Mode Controller

This paper presents a systematic approach to design a Lyapunov based super twisting differentiator. The differentiator will be shown convergent in a finite time whilst the relevant time is accurately estimated.  This differentiator is the main part to establish the sliding surface in higher order sliding mode. The differentiator  is used in the prescribed control structure  to regulate pressure...

full text

Sliding Mode MPPT Based Control For a Solar Photovoltaic system

---------------------------------------------------------------------***--------------------------------------------------------------------Abstract –This paper proposes the controlling of the photovoltaic (PV) system by sliding mode control(SMC). Here, open circuit voltage MPPT technique is used to track maximum power point. There is a difficulty in tracking the maximum power point of the phot...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 2

pages  4- 22

publication date 2019-07

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023